
RD-A173 028 INFORMATION PROCESSING RESEARCH(U) CARNEGIE-NELLON UNIV /2
PITTSBURGH PA DEPT OF COMPUTER SCIENCE E BALL ET AL
SEP 86 AFWAL-TR-8a6-101i F33615-81-K-i539

UNCLASSIFIED FFG 9/2 L

EIIIIIIIIIIhI
IIIIIIIIIIIIIE
EEIIIIIIIIIII
EllllllllhllEK
EIIIIEEEEIIII
llllllllEElhhE

5 11.6

ICROCOPY RESOLUTION TEST CHART

~OPAL BUREAU OF STANDARDS-1963-A

4\

AD-A173 028

AFWAL-TR-86-1011

INFORMATION PROCESSING RESEARCH

Ball, Bentley, Haberman, Hibbard, Kanade, Kung, McDermott, Newell, Rashid,
Reddy, Robertson, Sproull, and Wulf
The Carnegie-Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

September 1986

Final Report for Period 1 January 1981 to 31 December 1984

Approved for public release; distribution unlimited.

C.)

DTIC
ELECTE

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND t=
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6503

1b L) .U u

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASDIPA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will
be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHAHIRA M. HOPPER r RONALD L. RINGO, Acting Chief

Project Engineer Information Processing
Technology Branch
System Avionics Division

FOR THE COMMANDER

SPECTOR, Acting Chief
system Aviozic V-'
Avionics Laboratory

"Xf your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no loliger employed by your organization please notifyAFWAL/AAAT-
W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

bNEM

SEUIYCASFCTO FTIS PAGE (A 7 O 2
REPORT DOCUMENTATION PAGE

'". REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified _________________________

2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAILABILITY OF REPORT

Approved f or public release,
2b. OECLASSIF ICATION/OWNGRAOING SCHEDULE distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBE R(S)

AI'WAL-TB- 90- 10 1il

6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Carnegie-Mellon University I CMAcU AFWAL/AAAT-3

6c. ADDRESS (City. Slate and 71P Code) 7b. ADDRESS (City. State and ZIP Code)

500OForbes Avenue Wright-Patterson AFB
Pittsburgh, Pennsylvania 15213 Dayton, Ohio 45433-6543

Ga. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appicable) F31-1K13

Sc ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS. ____________

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209 ELEMENT NO. NO. NO. No

I I T IT LE (include Seculi ty ClassaiCation) 610E39 002
Information Processing Researc

12- PERSONAL AUTHOR(S) gobertson, 55roull,
all, Bentley, Haberman, Hayes, Hibbard, Kanade, Kung, McDermott, Newell, Rashid, Reddy, Wulf
13a. TYPE OF REPORT 13b. TIME COVERED 14. J~OF REPORT (Yr.. Mo., DaY17 . PAG~J 91NT

FINAL jFROM Jan 81 TO jjL_8k N9

10. SUPPLEMENTARY NOTATION

17, COSATiCCOES IS 1. SUBJECT TIERMS (Continue on reuerse ifneceuc,-j and identify by block number)
FIEL GROP SUGR. Distributed Processing, lmage Understanding, Machine Intelli-FIEL GROP SUGR. gence, Distributed Sensor Network, Cooperative User Interface05 0,_Integrated VLSI Systems, Natural Language, Shadow Geometry,

Gradient Space, Code 0ptimization Compiling Techniques,
19. ABSTRACT (Contignue on 'averse if neceseary and identify by btock number)

-fusreport docunricnts DARP xupportcd basic rcscanrch in Car-negie-Mellonl Univer-sit\1'S Compuiter Science

D cpmrtnient durting the period I L; uiary 1981 01h .ougi 31 I)CCembcr 19S3. ex tended to) 31 D ecemher~c 1984.

2 Fli ciaier disCLISSCS 011C Of seven m o resear-ch arcas. Sections wilh-in a chiapter present theai-ei's general

context, die spccific pr-oblems addresSe our contr-ibutions and their significance, and an annot.ited bibliog-

20 DIST RISGUTION/AVAI LABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIF ICATION

UNCLASSIFIED/UNLIMITED C1SAME AS RPT. 0 DTIC USERS 0Unclassified

22.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Chahira Hopper (nld r oe

D FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

SECURITY CLASSIFICATION OF THIS PACO

18. (Cont.)

Parallel Architectures Network Interprocess Commiunication, Dynamic Load Balancing
Flexible Parsing, Integrated Speech, Natural Language Algorithm Design Theory.

19. (Continued)

'The research areas and their main objectives arc:

* Distributed Processing: Develop techniques and systems for effective use of computer networks.
This effort involves developing a methodology for efficient utilization of distributed (loosely
connected) personal computers.

* Image Understanding: Apply knowledge effectively in assisting the image interpretation process.
This work deals with systems that perceive the external world through visual images, extract useful
information, and pass such information to another system that then employs it to accomplish
some larger task.

" Machine Intelligence: Investigate ways to utilize knowledge in obtaining intelligent action by
computers. Long range goals of this effort include the discovery of principles which enable
intelligent action and the construction of computer systems which can perform tasks requiring
intelligence.

" Programming Technology: Increase our ability to produce predictably high-quality software sys-
tems.

Explore and evaluate alternative techniques for the effective use of very large memories. This
effort focuses on the design and construction of a memory hierarchy incorporating video disk
technology.

" Distributed Sensor Networks: Construct a demonstration system of physically and logically dis-
tributed computers interacting through a communication network to identify, track, and display
the situation of multiple objects in a laboratory environment.

" Cooperative User Interfaces: Investigate methods for increasing human productivity by improving
the efficiency and effectiveness of man-machine communication. These techniques will be incor-
porated in a user interface system and evaluated in the department's research computing environ-
ment.

" Integrated VLSI Systems: Advance our ability to design and apply in real systems the high-
density digital circuits possible through emerging VLSI technologies.

iECU0ITY CLASSIFICATIO OP THIS PAGE

TABLE OF CONTENTS

Table of Contents

1. Introduction 1-1

1.1. Scope of Research 1-1
1.2. The CMU Research Environment 1-3

2. Research in Distributed Processing 2-1

2.1. Programming Languages and Environments 2-2
2.2. Programs and Facilities 2-3

2.2.1. Application programs 2-3
2.2.2. User Interface Systems 2-3
2.2.3. Distributed Resource Management 2-5
2.2.4. Maintenance Programs 2-6

2.3. The Distributed File System 2-6
2.3.1. Prototype storage systems 2-6
2.3.2. Methodology for evaluating storage systems 2-7

2.4. Bibliography 2-8

3. Research in Image Understanding 3-1

3.1. Understanding Three-Dimensional Images 3-1
3.1.1. Gradient space theory 3-1
3.1.2. Shadow geometry theory 3-2
3.1.3. Generalized cylinders 3-2
3.1.4. Image matching by two-stage dynamic programming 3-3

3.2. Modeling a Three-dimensional World 3-4
3.2.1. Modeling from aerial photography 3-5
3.2.2. Modeling from 3-D Range Imagery 3-5

3.3. Applications in Digital Mapping and Photointerpretation 3-6
3.3.1. An integrated spatial database 3-6

3.4. Vision for Navigation 3-7
3.4.1. A visual navigation system for the CMU rover 3-8
3.4.2. Obtaining camera motions from image sequences 3-8
3.4.3. Obtaining object motion from image sequences 3-8

3.5. Contributions to the SRI Testbed Facilities 3-9
3.6. Bibliography 3-10

4. Machine Intelligence Lcession For 4-1

4.1. Knowledge Representation SITI GRA&I 4-1
4.1.1. Machine Learning DTIC TAB 4-2

4.1.2. Adversarial Problem Solving Unannoced " 4-2
4.1.3. Massively Parallel Cognitive Architectures Justificatio 4-4
4.1.4. A Universal Problem-Solving Architecture 4-5

4.2. Knowledge Engineering By 4-6 MDistribution/

4.2.1. An Algorithm Design Assistant Distribution/. 4-6
AvallabLjity Codes4

4.2.2. Architectures for Fast, Intelligent Search 4-7
4.2.3. Massive Search Systems JAvali and/or 4-7
4.2.4. Prodigy: A Learning Apprentice Dist1 special 4-8
4.2.5. Speech Recognition 14-9

TABLE OF CONTENTS

4.2.6. SPAM: Rule-Based Systems for Aerial Photointerpretation 4-104.3. Bibliography
4-125. Research in Programming Technology 5-1

5.1. Automating Compiler Construction 5-15.1.1. Analyzing the target language 5-15.1.2. Creating "generating-systems" techniques 5-25.1.3. Finding code optimizing compiling techniques 5-35.2. Highly Secure and Reliable Systems 5-35.2.1. Design and implementation of parallel architectures and software 5-45.2.2. Verification concepts, techniques, and applications on parallel architectures 5-55.2.3. Specific design of fault tolerance and reliability support in parallel systems 5-55.3. Advanced Programming Environments 5-65.3.1. Designing a programming environment 5-6
5.3.2. Automatically generating environments 5-75.4. Bibliography

5-96. Research in Distributed Sensor Networks 6-1
6.1. A Communication-Oriented Operating System 6-16.2. Protocols for Network Interprocess Communication 6-26.3. An Interface Specification Language 6-36.4. Dynamic Load Balancing and Fault Reconfiguration 6-36.5. Prototype for Distributed Sensing 6-46.6. Transaction Based Systems 6-46.7. Bibliography

6-57. Research in Cooperative User Interfaces 7-1
7.1. Robust Communication

7-27.2. Robust. Flexible Parsing 7-2
7.3. Cooperative Error-correction 7-3
7.4. Media-rich Communication

7-57.5. Integrating Speech and Natural Language 7-5
7.6. Explanation

7-67.7. Bibliography
7-7

8. Research in Integrated VLSI Systems 8-1
8.1. VLSI Theory

8-1
8.1.1. Algorithms

8-28.1.2. Theory of algorithm design 8-28.1.3. Implementation issues 8-38.2. VLSI Systems
8-38.2.1. Architectures
8-3

8.2.2. Chips
8-58.3. VLSI Design Tools 8-68.4. Bibliography
8-8Index
.1

INTRODUMtiON

1. Introduction

This report documents basic computer science research in Carnegie Mellon University's Computer Science

Department. The Information Processing Techniques Office of the Defense Advanced Research Projects

Agency (DARPA) supported this work during the period I January 1981 through 31 December 1983, extended

to 31 December 1984.

The remainder of this chapter describes our research scope and the CMU-CSD research environment.

Chapters 2 through 8 then present in detail our seven major research areas: Distributed Processing, Image

Understanding, Machine Intelligence, Programming Technology, Distributed Sensor Networks, Cooperative

User Interfaces, and VLSI Systems. Sections in each chapter present the area's general research context, the

specific problems.we addressed, our contributions and their significance, and an annotated bibliography. The

index provides access via keywords and system names.

The bibliographies present selected references that, reflect the scope and significance of CMU's contribu-
tions to basic computer science research. Wherever possible particularly for key articles, we have iicluded

abstracts. While we have striven for comprehensive coverage, some documents have regrettably eluded our

efforts. Finally, though basic research does not proceed with the mechanical regularity of industrial produc-

tion, publication dates do indicate progress in the various problem areas. CSD Technical Report dates exhibit

the closest correlation with temporal progress and the report text frequently reappears later. in the more

accessible archival literature,

1.1. Scope of Research

We organize the research reported here under seven major headings. These interrelated categories and

their major objectives are:

o Distributed Processing (DP): Develop techniques and systems for effectively using computer
networks. This effort involves developing a methodology for efficiently utilizing distributed
(loosely connected) personal computers. Research on a concept demonstration system proceeds
in several areas:

o Design and implementation of basic system software facilities including an operating
system kernel, an interprocess communication facility, and a high-level development
environment.

o Integration of subsystems and services at two levels-the user interface and the under-
lying system architecture-in order to provide significant improvement in the produc-
tivity of computer science researchers.

o Design and implementation of two programming systems to support a variety of ap-
plications.

, 1-1

INTRODUCTION

o Development of a distributed file system, one of the principal centralized services that
support both the network of personal computers and larger, time-shared systems.

* Building an interactive document preparation system by merging existing packages
into an integrated environment.

o Extension of current message systems to handle multimedia formats by exploiting the
technology ofpersonal computers and their interconnecting network.

Explore and evaluate alternative techniques for effectively using very large memories. Long-term
goals of this effort focus on designing and constructing a memory hierarchy incorporating video
disk technology. Research in archival memory systems involves the following sub-tasks:

o Build the network-based Central File System.

o Integrate the Central File System into an environment of several heterogeneous com-
puter system

o Investigate data organization and data management strategies for storage media with
characteristics similar to those of video disks.

o Construct a simulation-based tool for design and analysis of memory hierarchies.

9 Image Understanding (IU): Apply knowledge effectively in assisting the image interpretation
process. This work deals with systems that perceive the external world through visual images,
extract useful information, and pass such information tO another system that then employs it to
accomplish some larger task. Research in this area aims at

o Understanding and constructing systems which can comprehend three-dimensional
structure in the environment from a two-dimensional visual image.

o Discovering the representations, algorithms, and control structures required to exploit
pre-existing knowledge about the environment for image understanding.

o Inventing special architectures and programming structures to realize the algorithms
efficiently.

• Machine Intelligence (MI): Investigate ways to utilize knowledge in obtaining intelligent action
by computers. Long range goals of this effort include the discovery of principles which enable
intelligent action and the construction of computer systems which can perform tasks requiring
intelligence. Research in machine intelligence covers a wide range of issues:

o Discovering and analyzing methods of problem solving.

o Discovering and analyzing the ways problems may be represented and how such
representations affect the difficulty of solving the problems.

o Discovering and analyzing processes which produce appropriate internal represen-
tations through recognition and description of external task situations.

o Discovering and understanding control structures and system organizations which can
combine a collection of problem-solving methods and problem representations into an
effective total system.

9 Programming Technology (PT): Increase our ability to produce predictably high-quality software
systems. Research in this area strives to:

o Automate the construction ofcompilers.

•-1.1
11 M MMFka-

INTRODUCI1ON

o Develop a highly secure and reliable system.

o Develop advanced programming environments that facilitate tool integration, system
version maintenance, and project management.

o Conduct basic research in programming technology that is likely to lead to additional
techniques for producing high-quality systems.

* Distributed Sensor Networks: Construct a demonstration system of physically and logically
distributed computers interacting through a communication network to identify, track, and dis-
play the situation of multiple objects in a laboratory environment. This project will involve the
following tasks:

o Evaluate the design and performance of our current Testbed system.

o Extend the Testbed through the addition of capabilities for motion perception, visual
sensing, multi-object tracking, and multi-sensor integration.

o Investigate design and implementation issues basic to distributed computing: ar-
chitecture, language primitives, and descriptive representation.

" Cooperative User Interfaces: Investigate methods for increasing human productivity by improv-
ing the efficiency and effectiveness of man-machine communication. These techniques will be
incorporated in a user interface system and evaluated in the department's research computing
environment. The effort will concentrate on the following goals:

o Shift the design emphasis from convenience of the system builder to that of the system-
user.

o Employ a more cooperative style of user interaction, including the ability to negotiaye
with the user to correct a misunderstanding.

o Apply newly available hardware capabilities to expand and enrich the mechanisms of
communication between man and machine.

* Integrated VLSI Systems: Advance our ability to design and apply in real systems the high-
density digital circuits possible through emerging VLSI technologies. Achieving this objective
relies on several interrelated efforts:

o Shift theoretical attention from computational complexity to developing applied VLSI
algorithms for both chips and programmable arrays.

o Build a system of integrated design tools sufficiently coordinated so that designers can
effectively and routinely carry out their tasks.

o Produce, using these strategies, a VLSI chip that is an integral part of an operational
system and evaluate the performance of that system against realistic criteria.

1.2. The CMU Research Environment

DARPA-supported computer science research in the Carnegie Mellon environment tends to focus around

speeific experimental systems that strive toward particular objectives, for example, developing a distributed

processor system or demonstrating an image understanding system. This report describes approximately two

dozen such activities. Sometimes creating and demonstrating a system will itself represent an appropriate

1-3

INTRODUCTON

scientific objective. At other times some particular performance level constitutes our goal. Often, however,

the system merely provides a vehicle that permits exploring and investigating basic scientific questions. Thus

our work tends to emphasize concept demonstration rather than system engineering. In short, though they

don't always represent ends in themselves, our research systems form a convenient structure for organizing

and discussing DARPA projects at CMU.

A major strength of the Carnegie Mellon University environment is the synergy resulting from the close

cooperation and interdependence of various research efforts despite their diverse foci. For example, AI

efforts have often needed the benefits of novel computer architecture and software techniques. Conversely,

techniques developed in AI have been used to solve some of the combinatorial problems arising in compiler

design and circuit layout. Close interaction and cooperation between the various research efforts has led to

new and innovative approaches and solutions, and has significantly contributed to the intellectual ferment

that makes Carnegie Mellon University unique in the computer science area.

We have no administrative structure corresponding to our effort organization. We consist simply of faculty,

research scientists, and graduate students of the Computer Science Department, with facility support divided

between an Engineering Laboratory and a Programming Group. The remaining structure is informal. This

organizational style minimizes barriers between efforts and promotes the interactions and synergy reflected in

the work distribution shown in Table 11.

144

INTRODUCTION

Number of
Areas DP IU MI PT DSN CUI VLSI

Eugene Ball 2 x 0
-Jon Bentley 1 0
Mario Barbacci 1 x
Hans Berliner 1 x
Roberto Bisiani 2 x x
Scott Fahlman 2 x x
Allan Fisher 1 x
Charles Forgy 1 x

* Nico Habermann 1]
Samuel Harbison 1 x
Phil Hayes 1 0

*Peter Hibbard 2 0 x
Paul Hilfinger 1 x
Anita Jones 1 x

*Takeo Kanade 1 0
Elaine Kant 1 x
John Kender 1 x
H. T. Kung 1 0
John McDermott 1 0
Hans Moravec 1 x
John Nestor 1 x
Joe Newcomer 1 x
Allen Newell 1 03
Richard Rashid 2 x 03
Raj Reddy 4 0 x 0 x
George Robertson 1 0
Mike Rychener 2 x x
William Scherlis 1 x
Mary Shaw 1 x
Herb Simon 1 x
Bob Sproull 1 0
Guy Steele 1 x
Howard Wactlar 1 x
Bill Wulf 1 0

x = Active research in this area
[] = Responsible for area

Table 1-1: Faculty effort distribution, 1981-84

1-5

RESEARCH IN DISTRIBUTED PROCESSING

.0 2. Research in Distributed Processing
Advances in network technologies and the increasingly sophisticated requirements of users present us with

the challenge of developing more effective computing facilities. Traditionally, resources have been provided

by timeshared systems. High-performance personal computers-powerful, single-user machines providing

quality graphics support such as a bit-map screen, a pointing device, and good networking capabilities-offer

substantial benefits over timeshared systems. Their consistently high availability of computing cycles and

high bandwidth at the man-machine interface allow a user-to-software interaction level that timeshared

environments cannot match. Timeshared systems do, however, allow extensive communication among users

and impose a coherent set of standards on the tools they provide. A shift away from a timeshared environ-

ment to a personal computing environment must retain these features.

Our research goal in Distributed Processing was to exploit networked personal computers effectively by

developing techniques and systems that will:
* Support large programs
9 Provide simultaneous multiprogramming capabilities
9 Offer language-independence
9 Enforce a high degree of protection
* Exploit the hardware's unique features (e.g. graphics capabilities)
* Be easily portable to other architectures

To attain our goal Distributed Processing researchers worked closely with other project scientists and

developed Spice, the Scientific Personal Integrated Computing Environment. Spice includes a complete

software system, over 160 scientific personal computers, and a packet switching network providing high-

bandwidth interprocess communication.

Distributed Sensor Net researchers developed the Spice operating system kernel, Accent (see also Section

6.1) [Rashid 84]. During this contract period we also implemented prototypes for several other projects that

utilize Spice services, though we do not support them directly. They include: the Gandalf Aloe editor-

generator system, the Descartes user interface management system, the DP Drawing Program, the Spoonix

Unix simulator, the Matchmaker remote procedure call generator, and the Cousin Cooperative User Interface

system (see Chapter 7). Our efforts can bc broken down into the following categories.
" Programming languages and environments
" Programs and facilities
" Archival memory: the distributed file system

2-1

RISEARCII IN DISTRIBUTED PROCFSSING

2.1. Programming Languages and Environments

To simplify transporting Spice to other personal machines, we wanted to make Spice language independent

and provide it with interlanguage communication facilities. We achieved this by supplementing the Perq's

manufacturer-supplied Pascal tools with comprehensive programming environments for Ada and Lisp, each

with its own microcode interpreter.

We chose a subset of Ada syntax and semantics for Spice that allowed us to use a modified version of the

Perq Pascal compiler. Since the compiler generates the same object code as the Pascal compiler, subset Ada

and Pascal are link level compatible. Ada researchers worked on designing and building: an incremental Ada

compiler, a source-level debugger called Kraut a run-time representation for Ada programs suitable for

interactive programming environments, and various program management tools [Hibbard 81].

No existing Lisp could be ported directly to Spice because of Perq microcode limitations. Thus we chose to

develop Common Lisp (a consolidation of Lisp -development efforts) [Steele 84] and from that, Spice Lisp.

Our design of Common Lisp and implementation of Spice Lisp is now complete [Fahlman 84].

One of the important problems encountered in implementing large distributed systems is debugging their

code. In addition to traditional process-level debugging, developers need to know the system's state, under-

stand system component interconnections, and monitor communication among processes. During the con-

tract period, we built two debugging facilities addressing these issues: BlackFlag and Kraut.

We developed BlackFlag as a display-oriented debugger for the DSN testbed system (discussed in Chapter

6). Built as a collection of cooperating processes, BlackFlag facilitated several important debugging opera-

tions:

" It provided a graphical display of the system's process communication structure.

" It allowed the kernel to intercept, monitor, and even modify messages before passing them on to
their destination processes.

" It provided for source-level debugging of individual processes.

The Kraut debugger continued, in many respects, the BlackFlag effort. While BlackFlag was largely a

prototype system that demonstrated the ideas behind distributed debugging, Kraut evolved to be the produc-

tion debugger for the Accent environment- supporting source-level debugging of both Pascal and Ada
programs. Kraut provides most of the commands of traditional symbolic debuggers, such as setting of

breakpoints, state inspection/modification and source file access. It also contains low-level debugger com-

mands for inspection of the target process at the code and microcode level. A novel feature of Kraut is its use

of Path-Rules as a mechanism for describing conditions to monitor and test on running programs. It allows

2-2

R3FSARCII IN DISTRIBUTED PROCESSING

the use of graphics to represent the state of variables and other information about a program. We imple-

mented Kraut using a rule-based paradigm that provided substantial flexibility and user tailorability. We also

began work. to be reported on later, on solutions to problems related to the portability of such debugging

features across machines and for different languages.

2.2. Programs and Facilities

To make Spice a feasible alternative to timeshared systems, we developed numerous application systems,

including a text editor, a document formatter, a graphics package, and a mail system. Our user interface

package, distributed resource manager, and maintenance programs help make Spice a habitable working

environment. Most Spice programs follow system-wide conventions to answer simple help requests and the

Spice Documentation group has produced a variety of user documents, including an introductory guide, a

guide to system utilities, and manuals for all major components.

2.2.1. Application programs

Spice offers several programs to handle text. Early in the project we built an emacs-like editorOil [Wright

84], based on Pepper, an editor that ran on Perqs before Accent was implemented. We later developed Mint, a

Scribe-like document formatter [Anderson 84].

We designed and wrote the Spice mail system, Mercury, in Ada. It provides flexibility and power similar to

the RdMail facility developed at CMU for the PDP-10 (Tops-10). Mercury allows users to read, answer, store,

retrieve, and organize their electronic mail. We originally brought Mercury up with the Subada compiler on a

vAx and then ported it, along with the SubAda compiler to Perqs in spring of 1984. A mail delivery

mechanism based on transparent Accent message passing to remote vAXes (where mailboxes were

maintained) was implemented to support the Perq implementation of Mercury.

2.2.2. User Interface Systems

Canvas [Ball 811, the Spice graphics utility, provides two levels of abstraction for modeling the physical

screen. The first is the canvas, which is a region having a particular user-defined coordinate space. Graphics

operations--painting with a color, drawing lines, selecting and using a particular font--take place in terms of

the canvas coordinates. These operations correspond to the raster operations that would be performed on the

physical screen were the program to have direct access to it. The second level of abstraction provides for a

canvas that is not necessarily visible. The visibility and the position on the screen of pixels that have been

written into a canvas are determined by viewport and the associated refresh tree.

We devised various systems for the creation and support of user interfaces within the Spice environment.

2-3

o ., Nw=& OA

RIS IARCII IN DISTRIBUTED PROC SSING

The multiplexing of screen, keyboard, and pointing device among several processes was originally performed

by Canvas, a separate process that had a part of its virtual address space mapped to the physical memory used

for the screen's bit-map. A user interface package called Environment supplied the means of invoking

programs, and the mechanism for providing them with the environment they needed during execution. In

particular it provided programs with parameters, switches and commands, and means for presenting infor-

mation on the screen.

Sapphire is the successor to Canvas/Environment as the window managing system for the Spice environ-

ment. Sapphire supports a full implementation of the covered window paradigm (where the rectangular

windows can overlap like pieces of paper on a desk). Windows can cover each other, can extend off the screen

in any direction, or may lie entirely offscreen. Windows in Sapphire usually have title lines and borders.

Application programs may create windows without either, but the borders are useful for showing where the

windows are, and the title lines are useful for displaying status information. In Spice, the title line might

contain the current working directory. A window running a compiler might have the version number of the

compiler and the name of the file being processed displayed in the title line. One of Sapphire's goals is to

provide a rich and powerful user interface without restricting the user interface of applications running under

it. This is important, since the user will be giving commands to the application program far more often than

to the window manager. Sapphire can be used to support many different types of applications with different

input and output requirements. Sapphire uses icons to enhance the user's productivity when executing

multiple tasks concurrently. Users will often to have several tasks performed simultaneously to increase their

efficiency. However, people easily lose track of what they are doing and need aids to help plan, monitor, and

control the various tasks operating at the same time. The icons in Sapphire present six kinds of information

about the process being run, as well as two kinds of information about the status of the window:
" Process name
* Linear progress bar, showing approximate progress as a percentage of the entire job
" Random progress bar, showing by a constantly changing pattern that progress is being made,

though without indicating "how much"

" Error status
" Waiting for user input

" Application defined attention signal
* Listener status, by highlighting the border of the icon of the Listener window
" Offscreen status, by showing three dots (...) to indicate a window is no longer visible

2-4
~~|

RESEARCh IN DISTRIBUTED0 PROCESSING

2.2.3. Distributed Resource Management

The sharing of network resources is complicated by issues of security and autonomy, since a network of

personal computers may be composed of nodes that are completely controlled by their owners. A network of

personal computers has the characteristic that its resources are distributed. In spite of the advantages of

* distributed resources, a nctwork of personal computers also has some disadvantages. For example, a user may

need to access data that is only available on a remote machine. Security may dictate that the data cannot be

* transferred in whole to any other machine; thus, the user must use a remote processor to access the data.

Another disadvantage is that the physical distribution of resources may not match the distribution of the

demands for service. Thus, some resources may be idle while others are overloaded. Finally, even though a

personal computer may have significant computational capabilities, its power is lcss than that expected of a

large mainframe computer. As a consequence, a network may collectively have tremendous computing

power, but its computing resources are distributed. Programs that might be practical on a time-shared

mainframe computer may be inappropriate for personal computers because of the amount of computation

involved. All of these problems can be alleviated by resource sharing.

To facilitate sharing in this sort of environment, an operating system component called the Butler was

proposed (Dannenberg 82]. As a host, the Butler is responsible for administering a sharing policy on its local

machine. This includes authenticating sharers, granting rights in accordance with a locally established policy,

and creating execution environments for guests. As an agent, the Butler negotiates with hosts on remote

machines to obtain resources requested by a client, and performs authentication to discourage a remote host

from exploiting the clientL

To protect a m--chine from exploitation by a guest process, the Butler relies upon a capability-based

accounting system called the Banker, which keeps track of resource utilization by guests, and provides

mechanisms for revoking service. Accounting offers a solution to the problem of laundered requests, where a

guest performs malicious operations through a privileged intermediary. The Banker's revocation mechanism

is useful in notifying all of a guest's servers that the guest's privileges have been reduced.

Although negotiation is designed to reduce the probability of revocation, a hierarchical recovery scheme is

supported by the Butler as an aid to the application programmer in cases where revocation does occur. The

three recovery methods are warning, where the guest is allowed to perform application specific actions to free

resources, deportation. where the guest is transported to another site by Butlers, and termination, where the

guest is simply aborted.

We implemented a Butler prototype that,though it provides only partial functionality of the Butler, does

support a real distributed processing application. We limited the implementation to remote invocation and

2-S

RESEARCH IN DISTRIBUTED PROCESING

deportation, because these are areas where performance is an important factor, and because these areas

seemed feasible to investigate, given the state of the implementation of the Spice system. In each case, we

instrumented the prototype to measure the operation cost in terms of actual processing time, and also in more

abstract terms to achieve some degree of technology independence in the results.

2.2.4. Maintenance Programs

Update [Giuse 84], a system built to support the distributed archival and retrieval of system files, has been

used as the chief distribution and archival mechanism since 1983 and it is currently used to handle all the data

storage needs of the Spice environment. Our primary goal in designing the Update system was to provide a

simple and uniform way for workstation users to retrieve all or parts of a software system. Update was also

meant to provide an automatic change-log facility that would allow maintainers to record information about

system changes at the time the system was being released. Another important goal was to minimize network
traffic involved in a tranfer, given the number of workstations and the potential for simultaneous requests for
any given set of archived files. As a result, the design of Update incorporated the ability to retrieve selectively

only files that are different in a new release. Files that haven't changed should never be transferred across the

network. Another design goal was to minimize file system usage on the remote machines. To achieve this

goal. Update stores only files that have changed. Files that are common to two or more versions are not
copied; a link is made instead, using the UNIX file-link mechanism. This approach results in considerable

space savings.

2.3. The Distributed File System

Under the Archival Memory project, CMU researchers developed a centralized fie system (CFS) to
provide secure, reliable storage and archiving facilities for files from all departmental computers. We

developed a similar storage system for Spice along with a methodology for evaluating storage systems.

Originally we had planned to integrate video disks into our file system archive servers. However, commercial

manufacturers have yet to release inexpensive, high-quality, write-once video disks. T"hus we merged the

Archival Memory project with our Distributed Processing work.

2.3.1. Prototype storage systems

Our design for the Spice File System incorporated a subset of the earlier Central File System (CFS) design

and was intended for initial installation on the Perq computers. The full specification was to appear later on

unspecified Central Server Machines. We devoted several months in early 1982 to building an interface fbr

the Perq file system. The interface implemented a subset of calls specified by the Spice/CFS File System

design. Tis effort was euentiafly meant to provide a compatibility package for the existing file system, thus

24
... I

RFSEARCII IN DIS'RIBUrED PROCESSING

allowing incremental conversion. Towards the end of that period it became clear that the design, worked out

two years earlier, did not easily meet all the requirements of a distributed environment. We then undertook a

redesign effort, producing the current design for Sesame, as the file system is now known [Thompson 85].

Significant changes included moving all protection issues into the name space, and allowing only invariant

files. We also now expect that Central Server Machines will be standard Spice Machines, with larger disks,

and eventually archival media, but running essentially the same software as a personal Spice Machine. This

uniformity should provide many advantages over a scheme drawing a hard distinction between user and

server machines.

In addition to being a file storage service, Sesame provides most of the interrelated services needed to allow

protected sharing of data and services in a network of personal and central computers. It deals with user

verification issues both locally and between machines, name lookup services for various typed objects, archiv-

ing of files to more stable media as well as the fundamental functions of reading and writing files. Sesame is

currently running as an alternate file system in the Spice environment. Each service is independently imple-

mentable on other hosts (e.g. UNIX VAxes) on the local net. Researchers are now testing and debugging the

system.

2.3.2. Methodology for evaluating storage systems

We developed a methodology for modeling storage devices and subsystems. Our strategy separates device-

dependent from hierarchy-dependent characteristics, thereby permitting us to use off-the-shelf software in

simulations of memory hierarchy performance. To demonstrate the methodology's effectiveness, we used it

to build a simulation tool that runs under UNIX and applied it to the CMU network file

system [Satyanarayanan 81, Satyanarayanan 83]. For design purposes, this modeling tool takes partial

specifications of an architecture and produces ranges of complete specifications including: environmental

parameters (e.g. load, reference patterns, capacity requirements), software parameters (e.g. migration

strategies), dnd hardware parameters (e.g. cost, access time, bandwidth, capacity, media lifetime). For analysis

purposes, the tool takes complete specifications, and helps diagnose problems (e.g. improperly set migration

strategies).

2-7

RFSEARCI I IN DISTRIBUTED PROCISSING

2.4. Bibliography

[Anderson 84] Anderson, P., P. Hibbard, and K. Porsche.
User Manual for Mini-The Spice Document Preparation System.
Spice Document, Carnegie Mellon University Computer Science Department,
February, 1984.

This document describes version 2B(12) of Mint, a document preparation system that
has been written as part of the Spice projecL Mint has been written as a research
vehicle for exploring document preparation and interactive document preparation
in particular. Although the current version of Mint does not have interactive fea-
tures, it is nonetheless a usable tool which is suitable for release to a wider com-
munity for use and evaluation. In making this release, I am making a commitment
to providing a stable and maintained system.

The document is organized as follows. This introduction provides an overview of the
system and gives operating information: it is followed by a brief review of Mint for
Scribe users. The information provided should be sufficient to allow the casual
user to prepare documents on the Perq of the same quality as those produced by
Scribe. More detailed information can be found in the Reference Manual.

[Ball 81 Ball, J.E.
Canvas: The Graphics Package for the Spice Personal Timesharing System.
In Proceedings of Computer Graphics 81, October, 1981.

[Barbacci 81] Barbacci, M.R.
Syntax and Semantics of CHDL&
In Proceedings of the Fifth International Conference of Computer Hardware Description

Languages and their Application, North-Holland Publishing Company, September, 1981.

[Barbacci 82a] Barbacci M.R.
Intermediate Representation for the Spice Ada+ Compiler.
Spice Document 138, Carnegie Mellon University Computer Science Department,
September, 1982.

This document describes the format of the Ada+ parse trees created by the Ada+
compiler although their lifetime is not restricted to that of a compilation: parse
trees can be stored in seperate files and can be manipulated by other programs. In
particular, when Ada+ is parsing the context specifications of a package (currently
the only compilation units allowed), it looks for both a text form (extension 'ada')
and a parse tree form (extension '.gdb') of the imported package specifications. If
a parse tree is not older than the text than Ada+ reads the parse tree directly, thus
saving the entire lexical analysis phase.

This document describes the format of files containing the Ada+ parse trees (we will
refer to these as GDB files), and not the format of the parse trees as they exist
during compilation. The file contains a subset of the information produced suring
a compilation since some of it is irrelevant or non-transportable across compila-
tions.

[Barbacci 82b] Barbacci, M.R.
The Ada+ Programming Environment.
Spice Document 139, Carnegie Mellon University Computer Science Department,
September, 1982.

2-8

RESEARCH IN DISTRIBUrED PROCESSING

[Barbacci 82c] Barbacci, M. R. and D. P. Siewiorek.
The Design and Analysis of Instruction Set Processors
McGraw-Hill Book Company, NY, 1982.

[Barbacci 82d] Barbacci, M. and D.P. Siewiorek.
The Design and Analysis of Instruction Set Processor
McGraw-Hill Book Company, 1982.

[Barbacci 83a1 Barbacci M.R., T.D. Newton, and R.G. Stockton.
The Ada+ Project.
Spice Report 162, Carnegie Mellon University Computer Science Department,
December, 1983.
Also appears in Proceedings of the Third Ada UK Annual Conference: Ada Implementation

and Early Experience, January 1984.
This paper describes the motivation, status, and plans for the Ada+ Programming

Environment being developed as part of the Spice project in the Department of
Computer Sciences at Carnegie Mellon University. The goals of the project are the
integration of programming tools through the use of a common intermediate
representation and the use of multiple code generators and associated engines.

[Barbacci 83b] Barbacci, M.R.
Hardware Description Languages,
In Ralston, Encyclopedia of Computer Science. Van Nostrand Reinhold Co., 1983.

[Barbacci 84a] Barbacci, M.R., W.H. Maddox, T.D. Newton, and R.G. Stockton.
The Ada+ Data Base.
Spice Report 161, Carnegie Mellon University Computer Science Department,
September, 1984.

This document describes the intermediate form used by the Ada+ system. The inter-
mediate form created by the Ada+ compiler is used during all phases of the
compilation and is stored in a data base from which it can be retrieved for later
use. Potential users are the compiler itself, (when processing context
specifications), the linker, and the debugger (at run time). Its use is not limited to
these subsystems. Version control and configuration management programs can
also use the data base.

The structures used in the data base are identical to those used during compile time,
except that (virtual memory) pointers between compile time data structures are
translated into a compilation independent format. The format and the translation
process are described later on.

[Barbacci 84b] Barbacci, M.R., R.V. Baron, and M.R. Thompson (eds.).
Spice Commands and Utilities.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

This document provides a description of how to use almost all of the Spice commands
and utilities. You will find that some of the more powerful commands and utilities
are fully documented in their own separate manuals and have only cursory
documentation here.

2-9

RM SEARCII IN DISTRIBUITD PROC SSING

[Barbaccig4c] Barbacci, M.R. (ed.).
Introuction to the Spice Users' Manual.
Technical Report, Carnegic Mellon University Computer Science Department,
August. 1984.

Spice stands for Scientific Personal Integrated Computing Environment. It is a project
within the Computer Science Department of Carnegic-Mellon University with the
goal of providing the software for a computing environment based on pawerful
personal computers. The environment that results will be able to replace the cur-
rent time-shared systimes for the majority of the computing needs of the depart-
ment and it is expected theat is will serve these needs into the 1990's. The project
is now making a public release of S5 version software. This software executes on
Perq Systems Corporation PERC computers, which are being used as interim
development machines.

This release represents significant steps toward our goal. It contains major improve-
ments relative to earlier versions. In particular, there are advancements in terms of
performance and coherence, as well as new tools, such as Mint and Sapphire.

[Clarke 82a] Clarke, E.M., A.P. Sistla, N. Francez and Y. Gurevich.
Can Message Buffers be Characterized in Linear Temporal Logic?
In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, August, 1982.

[Clarke 82bJ Clarke, E.M. and C.N. Nikolaou.
Distributed Reconfiguration Strategies for Fault Tolerant Multiprocessor Systems.
IEEE Transactions on Computers(C-31), August, 1982.

[Clarke 83) Clarke, E.M., S. German, and J.Y. Halpern.
On Effective Axiomatizations of Hoare Logics.
Journal of the ACM, July, 1983.

[Colwell 83] Colwell, R.P., C.Y. Hitchcock, and E.D. Jensen.
A Perspective on the Processor Complexity Controversy.
In Poceeding International Conference on Computer Design, October, 1983.

[Dannenberg 82) Dannenberg, R.B.
Resource Sharing in a Network of Personal Computers.
Technical Report CMU-CS-82-152, Carnegie Mellon University Computer Science Depart-

ment,
December, 1982.

As networks of personal computers are developed to replace centralized time-shared
systems, the need for sharing resources will remain, but the solutions developed for
time-sharing will no longer be adequate. In particular, the sharing of network
resources is complicated by issues of security and autonomy, since a network of
personal computers may be composed of nodes that are completely controlled by
their owners.

To facilitate sharing in this sort of environment, an operating system component called
the Butler is proposed. As a host, the Butler is responsible for administering a
sharing policy on its local machine. This includes authenticating sharers, granting
tights in accordance with a locally established policy, and creating execution en-
vironments for guests.

A number of applications for Butler are described: these fall into the categories of

2-10
tan ,,

RESEARCH IN DISTRIBUTED PROCESSING

information exchange, load distribution, and computational parallelism. A
prototype Butler has been constructed and used in real application demonstrating
computational parallelism, and the prototype has also demonstrated the depor-
tation of processes.

[Fahiman 841 Fahlman, S.E. and S.P. Harbison.
The Spice Project.
In Barstow, Sandewall, and Shrobe, Interactive Programming Environments. McGraw-Hill,

1984.
Timesharing evolved as a way to provide users with the power of a large interactive

computer system at a time when such systems were much too expensive to dedicate
to a single individual. Recent advances in hardware technology are opening up
new possibilities. The level of capital investment which today provides each user
with a small slice of a time-shared machine and a crude CRT terminal will, by the
mid-1980's, provide the same user with his or her own powerful machine, far more
powerful than today's microprocessors and equipped with such features as high-
resolution color graphics and audio 1/O devices. This development will enable the
user to avoid many of the compromises and limitations inherent in timesharing.
New high-speed network technologies make it possible to move to this personal
computing environment without foregoing the attractive features of timesharing:
shared information, good inter-user communication, and the sharing of expensive
peripherals.

The Spice project at Carnegie-Mellon University is one attempt to explore the pos-
sibilities of this new world. The goal of Spice is to develop an integrated research
computing environment based on a network of very powerful personal computers.
Machines of this power may be too expensive for widespread individual use today,
but we believe that by the mid-1980's they will be easily affordable by most resear-
chers.

[Giuse 841 Giuse, D.
Update: A File Transfer Facility.
Spice Document S165, Carnegie Mellon University Computer Science Department,
August, 1984.

Update is a program for transferring sets of files between the Perqs and a remote host.
Update will run between a Perq and any UNIX VAX. However, Spice primarily uses
the CFS and Spice Vaxen. Update allows Spice developers to store on a VAX
software that has been created on a Perq, and it allows users to transfer the newest
version of Spice software from a VAX to their Perqs. Update's special feature is that
it allows users to transfer only those files that are different from the ones already
on their Perqs. This is accomplished by comparing the date of creation of each
local file (on the Perq) in a set of files (SOF) with the creation date of remote files
(those on a VAX). Because Update minimizes ethernet traffic and facilitates stan-
dardization of Spice software versions, it is used instead of Cmuftp for transfer of
Spice software.

IHabermann 84J Habermann, A.N. and D.E. Perry.
Ada for Experienced Programmers
Addison-Wesley Publishing Company, 1984.

The goal of this book is the presentation of the major features of the Ada programming
language and their relevance to software engineering. Since concepts such as data
abstraction, excetion handling and concurrency are of fundamental importance to

2-11

Km".

RESEARCH IN DISTRIBUTED PROCESSING

the design and maintenance of software systems, we will cxlpain in detail how
Ada's facilities support such concepts. We do this by discussing a series of non-
trivial example programs that exhibit the typical use of the relevant language con-
structs. 'The examples are chosen on the basis of thcir suitability in illustrating
specific language features. Software engineering issues are taken into account. but
are not the primary motivation for selecting the particular examples. Our goal is
achieved if the examples demonstrate to what extent the Ada language supports
good programming style in software engineering.

[Harbison 82a1 Harbison, S.P. .
An Architectural Alternative to Optimizing Compilers.
In Proceedings of the Symposium on Architectural Support for Programming Languages and

Systems, Pages 57-65. March, 1982.
Programming languages are designed to make programming productive. Computer

architectures are designed to make program execution efficient. Although architec-
tures should be designed with programming languages in mind, it may be as in-
appropriate to make the computer execute the programming language directly as it
is to make the programmer use machine language. It is the compiler's job to match
the programming language and the computer architecture, and therefore making
compilers efficient and easy to write are important design goals of a complete
hardware/software system. This paper summarizes research completed in 1980 on
a computer architecture, TM, that takes over some of the more burdensome tasks
of optimizing compilers for high-level-languages (HLL's), performing these tasks
dynamically during the execution of the object program. This is a different ap-
proach to making compilers efficient than is commonly taken; more common
approaches include devising more efficient optimization algorithms, being clever
about when to do optimizations, and building the compilers semi-automatically.

[Harbison 82b] Harbison, S.P.
The Structure and Communication of Spice Objects.
Technical Report , Carnegie Mellon University Computer Science Department,
April 1982.

[Hayes 941 Hayes, P., R. Lerner, and P. Szekely.
Cousin Users Manual.
Technical Report Spice Project, Carnegie Mellon University Computer Science Depart-

mnent,
August, 1984.

COUSIN is a program that provides uniform, cooperative, graphical, command interfaces
for a variety of Spice applications. This manual describes the COUSIN interface
system from the viewpoint of the end user of applications which use COUSIN to
provide their user interface. If you wish to construct a COUSIN interface to one of
Your own applications, you will also need the COUSIN documentation for applica-
tion builders which can be found in the Spice Programmers Manual.

COUSIN interfaces employ a form-based model of communication. Each application has
an associated form analogous to the kind of business form in which information is
entered by filling in blanks, or circling alternatives. The fields of the form cor-
respond to the various pieces of information that the user and application need to
exchange during an interactive session including input parameters, output from
the application, and commands to the application. Forms of this kind show the
user what his options are and provide a simple yet powerful interface through

2-12

RESEARCII IN DISTRIBUTED PROCESSING

which COUSIN can provide error detection and correction services.

[Haynes 821 Haynes, L.S., R.L. Lau, D.P. Siewiorek and D.W. Mizell.
A Survey of Highly Parallel Computing.
Computer 15, January, 1982.

[Hibbard 81] Hibbard, P., A. Hisgen, 1. Rosenberg, M. Shaw and M. Sherman.
Studies in Ada Style.
Springer-Verlag Publishers, 1981.

[Hibbard 82a] Hibbard, P.G. and B. Leverett.
An Adaptive System for Dynamic Storage Allocation.
Software Practice & Experience(12), 1982.

[Hibbard 82b] Hibbard, P.G. and T.L. Rodeheffer.
Optimizing for a Multiprocessor: Balancing Synchronization Costs Against Parallelism in

Straight-Line Code,
In M. Dezani-Ciancaglini and U. Montanari, Lecture Notes in Computer Science, Pages

194-211. Springer-Verlag Publishers, 1982.

[Hibbard 82c] Hibbard, P.G.
Spice: An Exercise in Personal Scientific Computing.
Spice Report, Carnegie Mellon University Computer Science Department,
1982.

[Hibbard 82d] Hibbard, P.G., R. Whiteside, and N.S. Ostlund.
Systolic Algorithms for Monte Carlo Simulations.
In Proceedings of the Third International Conference on Distributed Computing Systems,

1982.

[Hibbard 84] Hibbard, P.
Mint Reference Manual.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

This document describes version 2B(12) of Mint, the Spice Document Formatter. This
is an early draft, and not all the facilities of Mint are accurately described. The
whole of the document has been produced by Mint and DP, executing on a Perq.

[Horowitz 84] Horowitz, M., D. Nichols, E. Smith.
Mercury.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

Mercury is the electronic mail system for Spice. Mercury provides commands for read-
ing mail, composing new mail, and organizing old mail. Mercury under Spice is
almost identical to Mercury under UNIX and is very similar to the RdMail system
on Tops-10 systems. The Spice system provides a transport mechanism known as
Mailman for getting electronic mail to and from a Perq. The Mailman program is
described in the Spice Commands and Utilities Manual. Mailman is run as a back-
ground server and, except for initialization, will not bother the user. .-__

[Jensen 83] Jensen, E.D.
Decentralized Resource Management for Embedded Computers.
In Proceedings of the AIAA Conference on Computers in Aerospace IV, October, 1983.

2-13

RESEARCH IN DISTRIBUTED PROCESSING

[MacLachlan 84] MacLachlan, R.
Hemlock User's Manual.
Technical Report, Carnegie Mellon University Computer Science Department,
August, 1984.

This document describes the Hemlock text editor, as of version 0.99(24). Hemlock is a
customizable, extensible text editor whose initial command set closely resembles
that of ITS/TOPS-20 EMACS. Hemlock is written in the Spice Lisp implementation
of Common Lisp, and can be ported to other implementations.

[Newton 84] Newton, T.D., M.R. Barbacci, W.H. Maddox, R.G. Stockton.
User's Guide to the Ada+ Compiler.
Spice Document 173, Carnegie Mellon University Computer Science Department.
October, 1984.

This document describes the first public version of the Ada + compiler, which runs on
the VAX and on the Perq (under Accent), producing code for the Perq. We are
releasing the compiler at this time so that it can be used by students taking the IC
course on Ada and any other willing guinea pigs.

The compiler implements full Ada, except for tasking and fixed-point types. Most of
the basic features work. Currently it compiles programs at about half the speed of
the Perq Pascal compiler, produces intermediate files that are about ten times the
size of the source files, and produces code that is about as good as the code
produced by Perq Pascal.

[Ostland 82] Ostlund, N.S., P.G. Hibbard, and R.A. Whiteside.
A Case Study in the Application of a Tightly-Coupled Multiprocessor to Scientific Com-

putations.
In B. Alder, S. Fernbach and, M. Rotenberg, Parallel Computations. Academic Press, 1982.

[Piloty 83] Piloty, R., M.R. Barbacci, D. Borrione, D. Dietmeyer, F. Hill, and P. Skelly.
CONLAN Report.
Lecture Notes in Computer Sciencel51, 1983.

[Rashid 84] Rashid, R.F.
Accent: A Distributed Operating System for a Network of Scientific Personal Computers.
In Proceedings of the Convention Informatique 84, September, 1984.

Accent is a message based distributed operating system kernel developed at Carnegie-
Mellon University to support a large network of personal scientific workstations.
Accent combines a network transparent interprocess communication facility with
sophisticated virtual memory management to allow copy-on-write transfer of data
between processes on the same processor and copy-on-reference data transfer be-
tween processes on different computers on a local area network. Accent differs
from other network operating system efforts such as Locus Computer
Corporation's LOCUS and Apollo Corporation Aegis in that all system and user
provided services (even kernel functions) can be distributed transparently on the
network. Despite its generality, the performance of Accent is comparable to a
more traditionally constructed operating system on the same processor.

Accent is currently being used on a network of 150 PERQ Systems Corporation PERQ
and PERQ2 computers interconnected via 10 MHz and 3MHz Ethernet. The
Accent interprocess communication facility is available on the Computer Science
Department's 40 VAX computers as a modification to Berkeley UNIX (4.lbsd and
4.2 bsd). Network operating system services on both VAX and PERQ computers

2-14

RESEARCII IN DISTRIBUTED PROCESSING

include network interprocess communication, remote process invocation, trans-
parent file access, printing services, network graphics and network name services.

Accent is being marketed for PERQ and PFRQ2 computers in the United States by
PERQ Systems Corporation under license from Carnegie-Mellon University.
Work is underway to port Accent to other workstations as well as a large mul-
tiprocessor.

[Sansom 84a] Sansom, R.
SPICE System Programmers Guide.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

This document provides an overview of how to write programs which use the ACCENT
operating system. Thus it explains how to use the server processes running under
Spice, how to create your own processes and how to talk between your own
processes. It does not attempt to explain how to make modifications to the operat-
ing system except for giving the procedure for constructing a new system image.

[Sansom 84b] Sansom, R.
AccUnix - Accent style IPC under UNIX.
Spice Document, Carnegie Mellon University Computer Science Department,
August, 1984.

An explanation of how to use the facilities available under UNIX for doing Accent style
IPC. In addition, a description of how to use the UNIX server for communication
with other machines.

[Satyanarayanan 811
Satyanarayanan, M.
A Study of File Sizes and Lifetimes.
Technical Report CMU-CS-81-114, Carnegie Mellon University Computer Science Depart-

ment,
April, 1981.

An investigation of the size and lifetime properties of files on the primary computing
facility in the Department of Computer Science at Carnegie-Mellon University is
presented in this paper. Three key issues are examined: the effect of migration on
file characteristics, the effect of file type on file characteristics, and the correlation
between file sizes and lifetimes. Analytical models that fit the observed data are
derived using two alternative techniques.

[Satyanarayanan 83]
Satyanarayanan, M.
A Methodology for Modeling Storage Systems and Its Application to a Network File System.
Technical Report CMU-CS-83-109, Carnegie Mellon University Computer Science Depart-

ment,
March, 1983.

The central question addressed by this dissertation is: Can one structure the modeling
of complex memory systems in such a way as to permit the use of standard,
off-the-shelf software for modeling the behavior of individual memory devices?

The highlights of the research reported in the dissertation are:

* The development of a methodology that permits simulation models for
memory systems to be built from performance models of the com-

2-15

RESEARCH IN DISTRIBUTED PROCESSING

ponents and the description of a tool based on this methodology.

" A demonstration of the side scope of applicability of this methodology
by examples drawn from the primary, secondary and tertiary levels of
the memory hierarchy.

" An implementation of the tool, and measurements to estimate the
overheads imposed by it.

" The use of the tool in the analysis of an actual memory system.

" The dissertation thus provides, in a constructive manner, an affirmative
answer to the question posed at the beginning of this document.

[Schwans 841 Schwans, Karsten.
Tailoring Sofiware for Multiprocessor Systems.
PhD thesis, Carnegie Mellon University Computer Science Department. 1984.

Multiple processor systems are becoming increasingly common. However, their use
remains difficult due to a lack of knowledge concerning the development of paral-
lel application programs. In addition, contrary to popular predictions of 'cheap
and plenty' resources, efficient management of distributed processor and memory
resources remains of critical importance to the successful use of these systems.

The contributions of this thesis are twofold. First, we design and implement a pro-
gramming environment for multiple processor applications, called the TASK Sys-
tem. Second, we discuss the integration of policies and mechanisms for resource
management into the TASK system.

In TASK, application programs are written in terms of abstractions offered by the
operating system used for program execution. As a result, once an application
program is written, its execution requires few additional eforts by the application's
programmer. Programs are written in two languages. The TASK language,
designed and implemented as part of this thesis, is used to describe the logical
structure of an applications program, and an existing, algorithmic language is
employed to implement the applications algorithms. The construction of an ex-
ecutable version of an application of the TASK and algorithmic language is
automated. Such construction includes automatic linking and loading as well as
the allocation of resources to the individual components of the application
program.

Programmers guide the allocation of hardware resources to program components by
stating high-level directives in TASK programs. To identify suitable directives and
to develop procedures that automatically perform resource allocation based on
these directives, we develop a model of multiple processor software and hardware,
called the proximity model. The model, the directives, and the resouce allocation
procesdures are tested by experimentation with application programs on the Cm*
multiprocessor.

[Sha 83) Sha, D., E.D. Jensen, R.F. Rashid, and J.D. Northcutt.
Distributed Cooperating Processes and Transactions,
Synchronization, ControL and Communication in Distributed Computing Systems., 1983.

[Snow 811 Snow, E.A. and D.P. Siewiorek.
Implementation and Performance Evaluation of Computer Families.
IEEE Transactions on Compu tersC- 30(6), 1981.

2-16
: i Pl

RESEARCH IN DISTRIBUTED PROCESSING

[Spector 82a] Spector, A.Z.
Performing Remote Operations Efficiently on a Local Computer Network.
Communications of the ACM 25(4), April. 1982.

A communication model is described that can serve as a basis for a highly efficient
communication subsystem for local networks. The model contains a taxonomy of
communication instructions that can be implemented efficiently and can be a good
basis for interprocessor communication. These communication instructions, called
remote references, cause an operation to be performed by a remote process and,
optionally, cause a value to be returned. This paper also presents implementation
considerations for a communication system based upon the model and describes
an experimental communication subsystem that provides one class of remote
references. These remote references take about 150 microseconds or 50 average
instruction times to perform on Xerox Alto computers connected by a 2.94
megabit Ethernet.

[Spector 82b] Spector A.Z. and P. Schwarz.
Synchronizing Shared Abstract Types.
Technical Report CMU-CS-82-128, Carnegie Mellon University Computer Science Depart-

ment,
July, 1982.

This paper discusses the synchronization issues that arise when transaction facilities are
extended for use with shared abstract data types. A formalism for specifying the
concurrency properties of such types is developed. This formalism uses depen-
dency relations that are defined in terms of an abstract type's operations. It re-
quires that the definition of an abstract type state whether or not cycles involving
these relations should be allowed to form. Directories and two types of queues are
specified using the technique, and the degree to which concurrency is restricted by
type-specific consistency properties is exemplified. A locking mechanism is
described that permits implementations to make use of this type-specific infor-
mation to approach the limits of concurrency.

[Spector 831 Spector, A.Z. and P. Schwarz.
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Reviewl7(4), April, 1983.

Transactions have proven to be a useful tool for constructing reliable database systems
and are likely to be useful in many types of distributed systems. To exploit trans-
actions in a general purpose distributed system, each node can execute a trans-
action kernel that provides services necessary to support transactions at higher
system levels. The transaction model that the kernel supports must permit ar-
bitrary operations on the wide collection of data types used by programmers. New
techniques must be developed for specifying the synchronization and recovery
properties of abstract types that are used in transactions. Existing mechanisms for
synchronization, recovery, deadlock management, and communication are often
inadequate to implement these types efficiently, and they must be adapted or
replaced.

[Steele 84] Steele, G.
Common Lisp: The Language.
Digital Press, 1984.

2-17

RESEARCH I IN DISTRIBUTED PROCESSING

[Thompson 85] Mary R. Thompson, Robert D. Sansom, Michael B. Jones Richard F. Rashid.
Sesame: The Spice File System.
Technical Report CMU-CS-85-172, Carnegie Mellon University Computer Science Depart-

ment,
November, 1985.

Sesame provides several distinct but interelated services needed to allow protected
sharing of data and services in an environment of personal and central coputers
connected by a network. It provides a smooth memory hierarchy between the
local secondary storage and central file system. It provides a global name space
and a global user authentication protocol.

[Uehara 83] Uehara, T. and M.R. Barbacci (eds.).
Proceedings of the Sixth International Symposium on Computer Hardware Description Lan-

guages and their Applications.
North Holland Publishing Company. 1983.

[Whiteside 82) Whiteside, R.A., P.G. Hibbard, and N.S. Ostlund.
A Systolic Algorithm for Monte Carlo Simulations.
In Proceedings of the Third International Coqference on Distributed Computer Systems, 1982.

[Wright 841 Wright. K.
Oil: The Spice ASCIi Editor
1984.
Internal Working Document of the Carnegie Mellon Computer Science Department.

2-18

RESEARCH IN IMAGE UNDERSTANDING

3. Research in Image Understanding

Image Understanding (IU) research aims at understanding and constructing Al systems that can perceive

their external world through visual images. IU systems typically operate in conjunction with other, larger

systems that use perceptual input. Thus, we evaluate IU systems ultimately by how much they contribute

toward visual capabilities the larger systems need to accomplish particular tasks.

The primary objective of CMU's IU research effort over the past few years has been to develop techniques

and systems that will lead to a successful demonstration of image understanding concepts over a wide variety

of tasks. Our work spans three interrelated areas:

* Understanding three-dimensional shapes: developing theories and techniques that distinguish
three-dimensional shapes from two-dimensional images and permit a system to comprehend the
structure of the visual environment.

* Modeling a three-dimensional world: applying specialized algorithms and control structures to
model three-dimensional urban scenes from aerial photographs and range images.

* Applications of three-dimensional methods: inventing custom architectures and programming
structures that can realize vision techniques and structures efficiently.

In addition to our work in these areas, we have contributed several expert system and programming packages

to the SRI Testbed facilities.

3.1. Understanding Th ree-Dimensional Images

One fundamental challenge in vision research is getting machines to discern three-dimensional shapes

represented as two-dimensional images. At CMU we have made progress in solving several aspects of this

problem. Our contributions include defining fundamental gradient space properties, applying shadow-

derived information, exploring generalized cylinder applications, and developing a new analysis technique for

streo image pairs.

3.1.1. Gradient space theory

Kanade and Shafer [Shafer 82a] have developed and summarized important properties of Mackworth's

gradient space. Their introduction and use of vector (edge) gradients as well as surface gradients provide

concise notation for several results. They explored properties including orthographic and perspective projec-

tions; gradient definitions; gradient space implications of vectors belonging to one or more surfaces and of

several vectors contained on a single surface; and relationships among vanishing points, vanishing lines, and

the gradient space. The vision research community has used their work as a study guide and reference.

3-1

RESIiARCII IN IMAGE UNDERSTANDING

3.1.2. Shadow geometry theory

The shadow geometry theory applies a gradient space approach to threc-dimensional shape inference. It

exploits image shadows that in previous methods, had inhibited finding surface orientations. Shafer IShafer

92b] has applied the theory to find surface orientations in polyhedra and generalized cylinders.

The shadow geometry theory poses a "basic shadow problem" where a single light source illuminates a

surface and casts its shadow on a second, background surface. Six parameters specify the problem: the
surface orientations (two parameters each) and the source vector direction. Given a line drawing that iden-

tifies shadow regions, the shadow geometry strategy uses shadow shape to generate constraints on possible
surface orientations. The strategy identifies "illumination surfaces" bounded by illumination vectors,.sin
Huffinan-Clowes line labels to surface edges, and applies the corresponding constraints in gradient space.

Given any three parameters, the method can determine the remaining unknowns.

Our work has also extended the basic problem to polyhedral and generalized cylinder analyses and yielded
benefits in both cases over previously used shape inference techniques. Shadow geometry mitigates one of

the classic problem in inferring shape from real images: low edge contrast within shadows. When analyzing

a polyhedron image via shadow geometry, detecting all shadow edges becomes unnecessary. For a general-

ized cylinder's curved surface, shadow geometry reveals surface orientation along a strip that cuts across the

surface image and provides information that complements curved-surface interpolation techniques.

3.1.3. Generalized cylinders

Binford's generalized cylinders form a commonly-used shape representation scheme in computer vision,
but research using the cylinders has been entirely based on heuristics, due to a lack of mathematical under-
standing and precise definition. We have investigated the properties of generalized cylinders and presented a

comprehensive framework including several subclasses. Our new definition, based on a mathematical model,

is more general than past definitions.

One difficulty with using generalized cylinders lies in calculating three-dimensional descriptions from

images of their occluding contours (outlines). Shafer and Kanade [Shafer 83a] studied this problem and

obtained their strongest results for solids of revolution, a generalized cylinder subclass. They produced a
closed-form method for analyzing solids-of-revolution image contours and demonstrated that a picture of the

contours is ambiguous (see Figures 3-1 and 3-2), with one degree of freedom related to the angle between the

line of sight and the solid's axis. Further analysis, such as applying the shadow geometry method, can resolve

this ambiguity and provide a unique 3-D interpretation of a solid-of-revolution image.

3-2

RESEARCH IN IMAGE UNDERSTANDING

(a) solid of revolution, side view

(b) Image of solid seen at 45 degrees

Figure 3-1: Solid-of-revolution contours

3.1.4. Image matching by two-stage dynamic programming

The key process in obtaining depth information via stereopsis is a search that identifies corresponding

points in left and right images. Then, given a camera model specifying the camera positions, triangulation will

yield the depth. Though the general correspondence problem involves searching an entire image, we can

further exploit the camera model and reduce the process to a set of scanline-scanline correspondence sub-

problems. That is, after rectifying an image pair so that the epipolar lines become horizontal scanlines, we can

restrict the search to a single pair of corresponding scanlines.

In edge-based stereo techniques, the search concentrates on points that delineate edges. The intra-scanline

method seeks edge-point pairs. The problem in this situation becomes one of finding a match-path on a

two-dimensional search plane whose axes are the right and left scanlines. Well-known dynamic programming

techniques handle the 2-D search efficiently. Where an edge extends across scanlines, vertically connected

image points provide additional consistency constraints over the 2-D search plane. Our research exploits

mutual correlations between scanlines by adding a second, inter-scanline search to find consistcncies among

3-3

RESEARCH IN IMAGE UNDERSTANDING

(c) Possible interpretations of image at various viewing angles.

Thick lines are visible portions; thin lines are estimated

Interpretations are scaled to same horizontal size.

69

Figure 3-2: Interpreting a solid-of-revolution image

scanlines. We have produced an efficient stereo image-matching algorithm that simultaneously searches both

within and between image scanlines [Ohta 83).

The algorithm uses edge-delimited intervals as the elements to match. Pursuing both intra- and inter-

scanline searches, we cast the problem as a three-dimensional search for a surface that best matches intra-

scanline edge points while conforming to inter-scanline constraints. Our method reduces computation to a

feasible amount and we have successfully processed urban aerial photographs containing tall buildings, roads,

and trees.

3.2. Modeling a Three-dimensional World

A vision system must be capable of more than classifying and segmenting images or identifying objects in

images to perform navigation, change detection, model-based interpretation, and other tasks. It must be able

to generate a three-dimensional description of the scene, or model a 3-D world. In the last few years we have

developed automatic techniques for building 3-D descriptions of scenes and objects from aerial images and

range dat

3-4

RISFARCI I IN IMAGE UNDEIRSTAND)ING

3.2. 1. Modeling from aerial photography

It is difficult to build a complete description of a complex scene from a single view, because one view

provides only partial information about the scene. Many surfaces may be occluded and some visible portions

may be difficult to recover because of shadows, highlights, and oblique viewing angles. The 3-D Mosaic

System, developed and tested by Herman and Kanade [Herman 83a], is a model-based vision system that

incrementally acquires a 3-D description of urban scenes from aerial photographs. Our system uses multiple

images obtained from multiple viewpoints under different conditions and builds a coherent model by com-

bining partial 3-D information from each view. This approach aids interpretation in two ways. First, surfaces

occluded in one image may become visible in another. Second, surface features that are difficult to analyze

and interpret in one image may become more apparent in another because of different viewpoint and/or

lighting conditions. The 3-D description serves as a model during its construction: at each step, the current

description determines which part of a scene, at which angle, should be taken from the next image.

3.2.2. Modeling from 3-D Range Imagery

Extracting 3-D information from 2-D image data poses a formidable challenge, partly because the system

must infer distance from intensity. Recent technological advances, however, permit direct extraction of the

third dimension in the form of range images. In addition to difficulties shared with 2-D image processing,

range data pose their own special problems: extracting useful features, handling noise, etc.

Smith and Kanade [Smith 84] developed a system that produces object-centered 3-D descriptions, begin-

nling with 3-D data obtained by a light-stripe rangefinder. The thrust of this work is data-driven, bottom-up,

autonomous processing that generates object descriptions from complicated scenes without referring to

specific pre-stored object models.

Beginning with iconic range data, our system generates descriptions while moving up a hierarchy of con-

tour, surface, and object to scene. In so doing, it exploits coherent relationships such as symmetry, col-

linearity, and coaxiality among lower-level elements, to hypothesize upper-level elements. This strategy is

justified because those coherent relationships do not usually occur accidentally [Kanade 81].

We focused our efforts on the use of occluding contours (outlines), which we can extract reliably from the

light-stripe range data. First, the program extracts, segments, and classifies contours. From the coherencies

among them, such as parallelism, surfaces are hypothesized and represented as conic surfaces (pipes, cones,

and planes). The program then confirms or refutes surface hypotheses by their ability to account for observed

surface area. It examines coherencies among the verified surfaces, such as axis intersections, to form

hypotheses of surface groups. Finally, the program compares surface groupings from multiple scenes; if a

3-5

RESEARCH IN IMAGE UNDERSTANDING

similar structure repeatedly occurs, it identifies the structure as an object. The program has been tested on

several scenes that include pans, cups, shovels, and polyhedra.

Tomita and Kanade developed a 3-D shape matching program that matches object models with the scene

descriptions obtained from the range image by finding appropriate coordinate transformations. It

hypothesizes a transformation by initially matching a few scene features with model features, then tests the

transformation with the remaining features for verification. The object models can be generated interactively

from the example scenes. In our program, object models can represent not only objects with rigid, fixed

shapes, but also objects with inter-part articulations such as rotational joints or linear-slide joints. This

representation also allows the program to process objects with three-dimensional symmetry (e.g., a cup with a

handle) unambiguously.

The IUS Group has been developing other facilities that acquire, process, and display 3-D range images to

aid research on 3-D range data analysis. The facilities include a data acquisition system for an industrial

setting and a library of programs for various tasks. The library includes software for boundary detection, 3-D

curve segmentation, 3-D edge detection, and a 3-D display program with rapid data/description overlay

graphics.

3.3. Applications in Digital Mapping and Photointerpretation

The development of intelligent spatial databases addresses two problems in digital mapping. First, from a

database perspective, the explosive increase in the availability of imagery and image-related information

makes finding a small piece of relevant data increasingly difficult. Storing tens of thousands of images on-line

is useless unless a user can quickly locate one interesting feature or landmark in many different images

simultaneously. Second, symbolic indexing and addressing of images for automated analysis requires many of

the same techniques as interactive analysis, except that in the latter, a human provides the guidance. Facilities

such as on-line image/map databases, signal and symbolic indexing of natural and man-made features, and

spatial reasoning can be viewed in the short term as semi-automated tools that increase human

photointerpreters' productivity. In the long term, the facilities provide a knowledge base for automated

systems that can perform detailed analysis, including change detection and automatic map description updat-

ing.

3.3.1. An integrated spatial database

The IUS Group has developed the Map Assisted Photointerpretazion System (MAPS), a large scale

image/map database system [McKeown 83). The first such system to work with a complex urban environ-

ment, MAPS contains approximately 100 high resolution aerial mapping images, a digital terrain (elevation)

3-6

RESEARCH IN IMAGE UNDERSTANDING

database, and map databases provided by the USGS and DMA. The system integrates these databases using

large-scale, high-resolution imagery to cover approximately a 150 square mile area centered over the District

of Columbia. Users can interact with a high resolution image display and qucry the database for names,

descriptions, and spatial relationships among natural and man-made map entities. Our research concerns
evaluating a hierarchical spatial representation to constrain the search in large databases, applying spatial

knowledge to navigate within a map database, and supporting complex queries that arise in cartography.

Dynamic symbolic and signal access to the image/map database, detailed semantic descriptions of man-

made and natural features, generalized geometric computations of map feature relationships, and an intel-

ligent window-based image display manager distinguish MAPS from other work in this area.

Spatial databases require many query capabilities and access mechanisms not found in more traditional

database applications. The following is a brief list of some of the current capabilities in MAPS:

" Geodetic Location Query of map entities extracted from imagery in map coordinates rather than
image coordinates.

" Time Selective ordering of imagery and map data based on acquisition date and time.

" Map Feature Descriptions Query of map entities based on full or partial descriptions of attributes
such as shape, area, population, and user-defined classifications.

" Access Methods Multiple access methods are provided.

Template Matching-Match on factual templates.

Signal Access--Match on location.

Symbolic Access-Match by name.

Geometric Access-Match by spatial constraints.

Memo Functions--Look up facts before computing from database.

" Spatial Decomposition Limitation of query area using inherent spatial decompositions, such as

political boundaries and neighborhoods.

3.4. Vision for Navigation

A mobile robot needs to know its motion and position relative to fixed objects, and must be able to track

moving objects. We have explored three vision methods that use multiple images to track both the robot's

motion and that of nearby objects. One method uses sequences of stereo image pairs, another exploits

monocular image sequences, and a third uses an adaptation of optical flow techniques. P"S

3-7

RESEARCH IN IMAGE UNDERSTANDING

3.4.1. A visual navigation system for the CMU rover

The FIDO [Thorpe 84] visual navigation system guides a robot built by the CMU Mobile Robot Lab to a

pre-defined location in a static environment. Our work extended and improved upon Moravec's work with
stereo image pair sequences. We first re-implemented the Stanford Cart algorithms and then successively

examined several of the most important components:

" A prototype multiprocessor implementation running on multiple VAXCS showed that FiDO could be
efficiently decomposed into several cooperating processes. With a high bandwidth communica-
tions channel or shared main memory, the multiprocessor version could run in as little as three
seconds per step.

" Our examination of interest operators, the means for picking points to match from one image to
the next, showed that changing low-level image-processing algorithms made much less difference
than adding geometric constraints.

* We built a better geometry module that uses more of the available geometric constraint on the
image matching process. This allowed us to drop from nine images at each step to two, decreasing
run time to 30 CPU seconds per step while maintaining accuracy.

" We developed a new path planning algorithm. Path Relaxation, that explicitly takes into con-
sideration the robot's field of view and the potentially conflicting goals of finding a shorter path
and staying further away from objects.

Various versions of Fido were tested and demonstrated throughout 1983.

3.4.2. Obtaining camera motions from image sequences

Lucas and Kanade [Lucas 811 applied their "method of differences" technique to the problem of obtaining

camera motion from an image sequence. The technique uses inter-image intensity differences and local

intensity gradients to iteratively estimate camera motion. First iterations use images that have been smoothed

with a low-pass filter, to get rough estimates for the parameters; later iterations use successively less-smoothed

images to achieve increasingly higher resolution.

By applying simple image smoothing and pixel differences, instead of correlations, and using multiple

resolution levels, our method avoids the expensive searches used by many other matching techniques. If
there are fewer unknown parameters (as in motion confined to a plane or for a pair of stereo cameras), our

technique will tolerate more error in initial parameter estimates and still converge to the correct solution.

Lucas's thesis [Lucas 84] includes an analysis of various real and synthetic image examples.

3.4.3. Obtaining object motion from image sequences

We have adapted Horn's and Schunck's optical flow algorithm to the problem of determining arbitrary

motions of an object from two-dimensional image sequences. The adapted algorithm allows for both gradual

changes in an object's appearance in the image sequence and flow discontinuities at the object's boundaries.

k34

RESEARCH IN IMAGE UNDERSTANDING

Our algorithm [Cornelius 831 uses a procedure that creates velocity fields for estimating an object's velocity

and brightness changes (i.e., x-ray thickness changes) in an image plane. The procedure computes velocities

from a series of images, using information about the spatial and temporal brightness gradients. We have

applied the method to x-ray images of an expanding ellipsoid and of a beating heart, and it can also be used

with reflectance images.

3.5. Contributions to the SRI Testbed Facilities

DARPA and DMA have jointly established an integrated demonstration system "testbed," with SRI as the

integrating contractor. The testbed will be used for demonstrating and evaluating the applicability of IU

research to cartography. The testbed has a user interface that simulates a cartographic workstation environ-

ment, and includes a computer with display terminal, an image display with track ball, and a digitizing tablet.

The system will support all major steps in mapmaking with continuously evolving automation. DMA will do

most image digitization off-line. The following contributions to the IUS testbed by CMU have been docu-

mented in the DARPA/DMA Image Understanding Testbed User's Manual [Hanson 84]:

* Delivered the Phoenix region-segmentation program [Law 82] that has a flexible user interface
and interactive graphics.

* Delivered all of our basic VAX software facilities for running image understanding programs,
including modified versions of the CMU image access and Grinnell graphics packages. This code
became the core of SRI's testbed facilities.

9 Implemented an improved version of the Moravec stereo reconstruction algorithm for the testbed.
This C version incorporates several improvements that increase speed and flexibility.

3-9

'a

RESEARCH IN IMAGE UNDERSTANDING

3.6. Bibliography

[Cornelius 831 Cornelius, N.H. and T. Kanade.
Adapting Optical Flow to Measure Object Motion in Reflectance and X-Ray Image Se-

quences.
In Lee S. Baumann, Editor, 14th Proceedings of the DARPA Image Understanding

Workshop, Pages 257-266. DARPA Information Processing Techniques in conjunction
with Computer Vision and Pattern Recognition Conference of the IEEE Computer
Society, June, 1983.

Available as reprint no. AD-POO1 215 from Science Applications, Inc., MacLean, VA. Also
available as CMU-CSD Technical Report CMU-CS-83-119.
This paper adapts Horn and Schunck's work on optical flow [31 to the problem of

determining arbitrary motions of objects from 2-dimemsional image sequences.
The method allows for gradual changes in the way an object appears in the image
sequence, and allows for flow discontinuities at object boundaries. We find
velocity fields that give estimates of the velocities of objects in the image plane.
These velocities are computed from a series of images using information about the
spatial and temporal brightness gradients. A constraint on the smoothness of
motion within an object's boundaries is used. The method can be applied to
interpretation of both reflectance and x-ray images. Results are shown for models
of ellipsoids undergoing expansion, as well as for an x-ray image sequence of a
beating heart.

[Hanson 84] Hanson, A.
DARPA/DMA Image Understanding Testbed User's Manual.
SRI International(277), January, 1984.
Version 1.1, contract no. MDA903-79-C-0588.

This manual is intended to help users of the Image Understanding Testbed system
understand the structure and major features of the environment. Separate chap-
ters are devoted to getting started as a new Testbed user, the Unix, Franz Lisp, and
emacs programming systems, Testbed applications programs, and Testbed utility
systems. Appendices contain descriptions of demonstrations, picture and graphics
utilities, the file system structure, and some elementary programming examples.

[Herman 83aJ Herman, M., T. Kanade, and S. Kuroe.
The 3D MOSAIC Scene Understanding System.
In Alan Bundy, Editor, Proceedings of the Eighth International Joint Conference on Artificial

Intelligence August 8-12. 1983, Pages 1108-1112. IJCAI, Inc., August, 1983.
Contact William Kaufmann, Inc., for reprint information.

A scene understanding system derives and represents information about a given scene
for the purpose of various given tasks. The 3D Mosaic system incrementally
derives a three-dimensional description of a complex urban scene from multiple
images. The description, which we call a scene model, is intended to be useful for
tasks such as matching, display generation, planning paths through the scene, and
making other decisions dealing with the scene environment. This paper briefly
describes the system and some experiments in acquiring and using the scene
model. Further details may be found in [6,7].

3-10
£

RISEARCH IN IMAGE UNDERSTANDING

[Herman 83b] Herman, M.
Monocular Reconstruction of a Complex Urban Scene in the 31) Mosaic System.
In Lee S. Baumann, Fditor, 14th Proceedings of the DARPA inage Understanding

Workshop June 23, 1983, Pages 318-326. DARPA Information Processing Techniques
Office, in conjunction with Computer Vision and Pattern Recognition Conference of the
IEEE Computer Society., June, 1983.

Available as reprint no. AD-POO1 220 from Science Applications, Inc., MacLean, Va.
A system for obtaining a surface-based, three-dimensional description of a complex

urban scene from a single image is described, and an example involving an aerial
photograph is provided. The author's approach exploits task-specific knowledge
involving block-shaped objects in an urban scene. First, linear connected struc-
tures in the image are generated; these are meant to represent building boundaries.
Next, the two-dimensional structures are converted into three-dimensional wire
frames. Finally, an approximate surface-based description of the scene is
generated from the wire frames. The monocular analysis system is a component of
the 3D Mosaic Scene Understanding System.

[Herman 84a1 Herman, M., T. Kanade, and S. Kuroe.
Incremental Acquisition of a Three-Dimensional Scene Model from Images.
IEEE Transactions on Pattern Analysis and Machine IntelligencePAMI-6(3):331-340, May,

1984.
Also published as CMU-CSD Technical Report CM U-CS-82-139.

'We describe the current state of the 3D MOSAIC project, whose goal is to incremen-
tally acquire a three-dimensional model of a complex urban scene from images.
The notion of incremental acquisition arises from the observations that 1) single
images contain only partial information about a scene, 2) complex images are
difficult to fully interpret, and 3) different features of a given scene tend to be
easier to extract in different images because of differences in viewpoint and light-
ing conditions. In our approach, multiple images of the scene are sequentially
analyzed so as to incrementally construct the model. Each new image provides
information which refines the model. We describe some experiments toward this
end. Our method of extracting 3D shape information from the images is stereo
analysis. Because we are dealing with urban scenes, a junction-based matching
technique proves very useful. This technique produces rather sparse wire-frame
descriptions of the scene. A reasoning system that relies on task-specific
knowledge generates an approximate model of the scene from the stereo output.
Gray scale information is also acquired for the faces in the model. Finally, we
describe an experiment in combining two views of the scene to obtain a refined
model.

[Herman 84b] Herman, M. and T. Kanade.
The 3D MOSAIC Understanding System: Incremental Reconstruction of 3D Scenes from

Complex Images.
Technical Report CMU-CS-84-102, Carnegie Mellon University, Computer Science Depart-

ment,
February, 1984.

The 3D Mosaic system is a vision system that incrementally reconstructs complex 3D
scenes from multiple images. The system encompasses several levels of the vision
process. starting with images and ending with symbolic scene descriptions. This
paper describes the various components of the system, including stereo analysis,

3-11

RISEARCII IN IMAGE UNDERSTANDING

monocular analysis, and constructing and modifying the scene model. In addition,
the representation of the scene model is described. This model is intended for tasks
such as matching, display generation, planning paths through the scene, and
making other decisions about the scene environment. Examples showing how the
system is used to interpret complex aerial photographs of urban scenes are
presented.

Each view of the scene, which may be either a single image or a stereo pair. undergoes
analysis which results in a 3D wire-frame description that represents portions of
edges and vertices of objects. The model is a surface-based description constructed
from the wire frames. With each successive view, the model is incrementally up-
dated and gradually becomes more accurate and complete. Task-specific
knowledge, involving block-shaped objects in an urban scene, is used to extract the
wire frames and construct and update the model.

[Kanade 81] Kanade, T.
Recovery of the Three-dimensional Shape of an Object from a Single View.
Artificial Jntelligencel7(1-3):409-460, August, 1981.

Given a single picture which is a projection of a three-dimensional scene onto the
two-dimensional picture plane, we usually have definite ideas about the three-
dimensional shapes of objects. To do this we need to use assumptions about the
world and the image formation process, since there exist a large nfumber of shapes
which can produce the same picture.

The purpose of this paper is to identify some of these assumptions--mostly geometrical
ones--by demonstrating how the theory and techniques which exploit such as-
sumptions can provide a systematic shape-recovery method. The method consists
of two parts. The first is the application of the Origami theory which models the
world as a collection of plane surfaces and recovers the possible shapes qualita-
tively. The second is the technique of mapping image regularities into shape
constraints for recovering the probable shapes quantitatively.

Actual shape recovery from a single view is demonstrated for the scenes of an object
such as a box and a chair. Given a single image, the method recovers the three-
dimensional shapes of an object in it, and generates images of the same object as
we would see it from other directions.

[Law 821 Law, K., S. Shafer, T. Kanade and D. Williams.
The Phoenix Image Segmentation System: Description and Evaluation.
SRI Intemational(289), December, 1982.
Version 1.1, contract no. MDA903-79-C-0588, SRI Project # 1009.

Phoenix is a computer program for segmenting images into homogeneous closed
regions. It uses histogram analysis, thresholding, and connected-components
analysis to produce a partial segmentation, then resegments each region until
various stopping criteria are satisfied. Its major contributions over other recursive
segmenters are a sophisticated control interface, optional use of more than one
histogram-dependent intensity threshold during tentative segmentation of each
region, and spatial analysis of resulting subregions as a form of look-ahead' for
choosing between promising spectral features at each step.

Phoenix was contributed to the DARPA Image Understanding Testbed at SRI by
Carnegie-Mellon University. This report summarizes applications for which
Phoenix is suited, the history and nature of the algorithm, details of the Testbed
implementation, the manner in which Phoenix is invoked and controlled, the type

3-12

R1SEARCH IN IMAGE UNDERSTANDING

of results that can be expected, and suggestions for further development. Baseline
parameter sets are given for producing reasonable segmentations of typical in-
agery.

[Lucas 81) Lucas, B.D., and T. Kanade.
An Iterative Image Registration Technique With an Application to Stereo Vision.
In Lee S. Baumann, Editor, Proceedings of the 12th DARPA Image Understanding Workshop,

Pages 121-127. DARPA, April, 1981.
Also found in IJCAI '81 Proceedings, pp.674-679.

Image registration finds a variety of applications in computer vision. Unfortunately,
traditional image registration techniques tend to be costly. We present a new
image registration technique that makes use of the spatial intensity gradient of the
images to find a good match using a type of Newton-Raphson iteration. Our
technique is faster because it examines far fewer potential matches between the
images than existing techniques. Furthermore, this registration technique can be
generalized.

[Lucas 84] Bruce D. Lucas.
Generalized Image Matching by the Method of Differences.
PhD thesis, Carnegie Mellon University, Computer Science Department, July, 1984.

[McKeown 811 McKeown, D.M., Jr., and T. Kanade.
Database Support for Automated Photo Interpretation.
In Lee S. Baumann, Editor, Proceedings of the DARPA Image Understanding Workshop,

Pages 7-13. DARPA, April, 1981.
This paper is concerned with the use of a database to support automated photo inter-

pretation. The function of the database is to provide an environment in which to
perform photo interpretation utilizing software tools, and represent domain
knowledge about the scenes being interpreted. Within the framework of the
database, image interpretation systems use knowledge stored as map, terrain, or
scene descriptions to provide structural or spatial constraints to guide human and
machine processing. We describe one such system under development, MAPS
(Map Assisted Photo interpretation System), and give some general rationales for
its design and implementation.

[McKeown 82a] McKeown, D.M., Jr.
Concept Maps.
In Lee S. Baumann, Editor, 13th Proceedings of the DARPA Image Understanding Workshop,

Pages 145-153. Science Applications, Inc., MacLean, VA, September, 1982.
Also appears in the CMU-CSD technical report CMU-CS-83-117.

This paper describes a representational mechanism for constructing three-dimensional
large scale spatial organizations for applications in areas such as cartography and
land use studies, photo interpretation for reconnaisance and surveillance, and
geological modeling for resource analysis. It focuses on the representation and
utilization of map information as a knowledge source for photo-interpretation, in
particular, the description of a highly detailed, large scale geographic area:
Washington D.C. Methods of data acquisition, query specification and geometric
operations on map data are discussed. These ideas have been implemented into a
working map database system, CONCEPTMAP, as a component of MAPS: (Map
Assisted Photo-interpretation System), our ongoing research in interactive photo-
interpretation work stations.

3H
3-13

RESEARCH IN IMAGE UNDERSTANDING

[McKeown 82b McKeown, D.M. and JL. Denlinger.
Graphical Tools for Interactive Image Interpretation.
Computer Graphicsl6(3):189-198. July, 1982.

This paper describes BROWSE, an interactive raster image display facility which is a
major component of a larger integrated Map Asssted Photointerpretation System
(MAPS), being developed as a prototype interactive aid for photointerpretation.
Application areas for this research include image cartography, land use studies and
reconnaissance, as well as image database organization, storage, and retrieval.

BROWSE is a window-oriented display manager which supports raster image display,
overlay of graphical data such as map descriptions and image processing segmen-
tations, and the specification and generation of 3D shaded surface models.
Digitized imagery from black and white and color aerial mapping photographs is
displayed by BROWSE at multiple levels of resolution and allows for dynamic
positioning, zooming, expansion or shrinking of the image window. Map data
represented as vectors and polygons can be superimposed on the imagery through
image-to-map registration. Access to collateral map databases and terrain models
may be accomplished using the BROWSE graphical interface. Finally, the window
representation gives a convenient communication mechanism for passing image
fragments to image interpretation programs, which generally run as separate
processes. The results of such processing can be returned to BROWSE for further
processing by the user.

We will discuss the rationale behind the design of BROWSE as well as its application to
domains including aerial photointerpretation and 3D cartography.

[McKeown 83) McKeown, D.M., Jr.
Maps: The Organization of a Spatial Database System Using Imagery, Terrain, and Map

Data,
In Lee S. Baumann, Editor, 14th Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA., June, 1983.
Reprint no. AD-POO1 199. Also available as CMU-CSD technical report CMU-CS-83-136.

This paper presents the system description and organization of MAPS, the Map As-
sisted Photo interpretation System. MAPS is a large integrated database system
containing high resolution aerial photographs, digitized maps and other car-
tographic products, combined with detailed 3D descriptions of man-made and
natural features in the Washington, D.C. area. Applications of the Maps system in
the areas of map-guided image segmentd'ion, rule-based systems for image inter-
pretation, and 3D scene generation are discussed. A classification of image
database systems into three models is also presented. These models are the Image
Database (ID) Model, the Map Picture Database (MPD) Model and the
Image/Map Database (IMD) Model.

[McKeown 84a] McKeown, D.M., Jr.
Digital Cartography and Photo Interpretation from a Database Viewpoint,
In Gargarin, G. and E. Golembe, New Applications of Data Bases, Pages 19-42. Academic

Press, 1984.
This paper gives an overview of database issues in digital cartography and aerial

photointerpretation. A classification of database systems based on the method of
data acquisition and underlying spatial representation is described. We also
present a brief overview of MAPS, the Map Assisted Photointerpretation System.
MAPS is a large integrated database system containing high resolution aerial

3-14

RESEARCH IN IMAGE UNDERSTANDING

photographs, digitized maps and other cartographic products, combined with
detailed 3D descriptions of man-made and natural features in the Washington
D.C. area.

[McKeown 84b] McKeown, D.M., Jr.
Knowledge-Based Aerial Photo Interpretation.
Photogrammeria, Journal of the International Society for Photogrammetry and Remote

Sensing39:91-123, March, 1984.
Special issue on pattern recognition.

This paper presents an overview of work in two areas that are crucial towards the
development of automated tools for aerial photointerpretation: large-scale spatial
databases, and rule-based systems for photointerpretation. First, we present a
description of models for spatial database systems and outline requirements fo
rdatabase support for knowledge-based photointerpretation. Next we present a
brief description of the organization of MAPS, the Map-Assisted Photointerpreta-
tion System. MAPS is a large integrated database system containing high-resolution
aerial photographs, terrain, digitized maps and other cartographic products, com-
bined with detailed 3D descriptions of man-made and natural features in the
Washington D.C. area. Finally, we discuss recent work in the area of rule-based
systems for photointerpretation. The system, SPAM, consists of three major com-
ponents, an image/map database, a collection of image processing tools, and a
rule-based system whose domain of expertise is commercial airports.

[McKeown 84c] McKeown, D.M., and J.L Denlinger.
Map-Guided Feature Extraction From Aerial Imagery.
In Proceedings of the Second IEEE Computer Society Workshop on Computer Vision.

Representation and Control, IEEE, May, 1984.
In this paper we discuss the use of map descriptions to guide the extraction of man-

made and natural features from aerial imagery. An approach to image analysis
using a region-based segmentation system is described. This segmentation system
has been used to search a database of images that are in correspondence with a
geodetic map to find occurrences of known buildings, roads, and natural features.
The map predicts the area of uncertainty caused by errors in the image to map
correspondence. The segmentation process then searches for image regions that
satisfy 2-dimensional shape and intensity criteria. If no initial region is found, the
process attempts to merge together those regions that may satisfy these criteria.
Several detailed examples of the segmentation process are given.

[McKeown 84d] McKeown, D.M., Jr.
Spatial Database Research at CMU.
IEEE 1984 Proceedings of Trends and Applications(CH2053-7/84/000/0319):319-323, July,

1984.
This paper gives a brief overview of current research at Carnegie-Mellon University in

the area of spatial database systems for digital cartography and aerial photoin-
terpretation. A brief overview of MAPS, the Map-Assisted Photointerpretation
System, is presented. MAPS is a large integrated database system containing high
resolution aerial photographs, digitized maps, and other cartofraphic products,
combined with detailed 3D descriptions of man-made and natural features in the
Washington D.C. area.

3-15

RESEARCH IN IMAGE UNDERSTANDING

[McKeown 84e] McKeown, D.M., and OE. Lukes.
Digital Mapping and Image Understanding.
In Archives of the XVih Congress on Phologrammetry and Remote Sensing. Pages 690-697.

International Society for Photogrammetry and Remote Sensing, June, 1984.
Rio de Janeiro, Brazil.

Emerging requirements associated with digital mapping pose a broad set of challenging
problems in image understanding research. Currently several leading research
centers are pursuing the development of new techniques for automated feature
extraction; for example, road tracking, urban scene generation, and edge-based
stereo compilation. Conccpts for map-guided scene analysis are being defined
which will lead to further work in. automated techniques for spatial database
validation, revision and intensification.

This paper seeks to describe on-going activity in this field and suggest areas for future
research. Research problems range from the organization of large-scale digital
image/map databases for tasks such as screening and assessment, to structuring
spatial knowledge for image analysis tasks, and the development of specialized
"expert" analysis components and their integration into automated systems. Sig-
nificantly, prototype image analysis workstations have been configured for both
film-based and digital image exploitation which interface conventional image
analysts and extracted spatial data in computer-assisted systems. However, the
state-of-the-art research capabilities are fragile, and successful concept demonstra-
tions require thoughtful analysis from both the mapping and image understanding
communities.

[Ohta 831 Ohta, Y. and T. Kanade.
Stereo by Intra- and Inter-scanline Search Using Dynamic Programming.
Technical Report CMU-CS-83-162, Carnegie Mellon University, Computer Science Depart-

ment,
October, 1983.

This paper presents a stereo matching algorithm using the dynamic programming tech-
nique. the stereo matching problem, that is, obtaining a correspondence between
right and left images, can be cast as a search problem. When a pair of stereo
images is rectified, pairs of corresponding points can be searched for within the
same scanlines. We call this search intra-scanline search. This intra-scanline
search can be treated as the problem of finding a matching path on a two-
dimensional (2D) search plane whose axes are the right and left scanlines. Ver-
tically connected edges in the images provide consistency constraints across the 2D
search planes. Inter-scanline search in a three-dimensional (3D) search space,
which is a stack of the 2D search planes, is needed to utilize this constraint.

Our stereo matching algorithm uses edge-delimited intervals as elements to be
matched, and employs the above mentioned two searches: one is inter-scanline
search for possible correspondences of connected edges in right and left images
and the other is intra-scanline search for correspondences of edge-delimited inter-
vals on each scanline pair. Dynamic programming is used for both searches which
proceed simultaneously: the former supplies the consistency constraint to the
latter while the latter supplies the matching score to the former. An interval-based
similarity metric is used to compute the score.

The algorithm has been tested with different types of images including urban aerial
images, synthesized images, and block scenes, and its computational requirement
has been discued.

3-16

RESEARCH IN IMAGE UNDERSTANDING

[Shafer 82a] Shafer, S.A., and T. Kanade.
Gradient Space Under Orthography and Perspective.
In Proceedings of the IEEE Workshop on Computer Vision: Representalion and Control,

Pages 22. IEEE Computer Society, P.O. Box 80452, Los Angeles, CA 90080, August,
1982.

Also available as CMU-CSD Technical Report CMU-CS-82-123.
Mackworth's gradient space has proven to be a useful for image understanding.

However, descriptions of its important properties have been somewhat scattered in
the literature.

This paper develops and summarizes the fundamental properties of the gradient space
under orthography and perspective, and for curved surfaces. While largely a
recounting of previously published results, there are a number of new obser-
vations, particularly concerning the gradient space and perspective projection. In
addition, the definition and use of vector gradients as well as surface gradients
provides concise notation for several results.

The properties explored in the paper include the orthographic and perspective projec-
tions themselves; the definition of gradients; the gradient space consequences of
vectors (edges) belonging to one or more surfaces, and of several vectors being
contained on a single surface; and the relationships between vanishing points,
vanishing lines, and the gradient space.

The paper is intended as a study guide for learning about the gradient space, as well as
a reference for researchers working with gradient space.

[Shafer 82b) Shafer, S., and T. Kanade.
Using Shadows in Finding Surface Orientation.
In 13th Proceedings of the DARPA Image Understanding Workshop, Pages 61. Science Ap-

plications, Inc., MacLean, VA. September, 1982.
Also available as CMU-CSD Technical Report CMU-CS-82-100.

Given a line drawing from an image with shadow regions identified, the shapes of the
shadows can be used to generate constraints on the orientations of the surfaces
involved. This paper describes the theory which governs those constraints under
orthography.

A 'Basic Shadow Problem' is first posed, in which there is a single light source, and a
single surface casts a shadow on another (background) surface. There are six
parameters to determine: the orientation (2 parameters) for each surface, and the
direction of the vector (2 parameters) pointing at the light source. If some set of
three of these are given in advance, the remaining three can then be determined
geometrically. The solution method consists of identifying 'illumination surfaces'
consisting of illumination vectors, assigning Huffman-Clowes line labels to their
edges, and applying the corresponding constraints in gradient space.

The analysis is extended to shadows cast by polyhedra and curved surfaces. In both
cases, the constraints provided by shadows can be analyzed in a manner analogous
to the Basic Shadow Problem. When the shadow falls upon a polyhedron or
curved surface, similar techniques apply. The consequences of varying the posi-
tion and number of light sources are also discussed. Finally, some methods are
presented for combining shadow geometry with other gradient space techniques
for three-dimensional shape inference.

3-17

RESEARCH IN IMAGE UNDERSTANDING

[Shafer 83a] Shafer. S. A.. and T. Kanade.
The Theory of Straight Homogenous Generalized Cylinders and A Taxonomy of General-

ized Cylinders.
In Lee S. Baumann, Editor, 14th Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA, January, 1983.
Reprint no. AD-POO1 209. Also available as CMU-CSD technical report CMU-CS-83-105.

In recent years, Binford's generalized cylinders have become a commonly used shape
representation scheme in computer vision. However, research involving general-
ized cylinders has been hampered by a lack of analytical results at all levels, even
including a lack of a precise definition of these shapes.

In this paper, a definition is presented for Generalized Cylinders and for several sub-
classes. Straight Generalized Cylinders, with a linear axis. are important because
the natural object-centered coordinates are not curved. The bulk of the paper is
concerned with Straight Homogenous Generalized Cylinders, in which th,; croms-
sections have constant shape but vary in size.

The results begin with deriving formulae for points and surface normals for these
shapes. Theorems are presented concerning the conditions under which multiple
descriptions can exist for a single solid shape. Then, projcctions, contour
generators, shadow lines, and surface normals are analyzed for some subclasses of
shapes. The strongest results are obtained for solids of revolution (which we have
named Right Circular SHGCs), for which several closed-form methods for analyz-
ing images are presented.

[Shafer 83b] Shafer, S.A.
Shadow Geometry and Occluding Contours of Generalized Cylinders.
PhD thesis, Carnegie-Mellon University, May, 1983.
Also available as CMU-CSD technical report CMU-CS-83-131.

Given a line drawing from an image with shadow regions identified, the shapes of the
shadows can be used to generate constraints on the orientations of the surfaces
involved. This thesis desribes the theory which governs those constraints and
shows how it can be applied to polyhedra and certain types of generalized
cylinders.

[Shafer 84] Shafer, SA.
Optical Phenomena in Computer Vision.
In Proceedings of the Canadian Society for Computational Studies of Intelligence Conference,

London, Ontario, Pages 1-34. May, 1984.
Computer vision programs are based on some kind of model of the optical world, in

addition to whatever significance they may have in terms of human vision, al-
gorithims, architectures, etc. There is a school of research that addresses this aspect
of computer vision directly, by developing mathematical models of the optics and
geometry of image formation and applying these models in image understanding
algorithms. In this paper, we examine the optical phenomena that have been
analyzed in computer vision and suggest several topics for future research.

The three topics that have received the most attention are shading (and glossiness),
color, and shadows. Shape-from-shading research, while producing many inter-
esting algorithms and research results, has primarily been based on very simplified
models of glossiness. Since realistic gloss models exist within the optics com-
munity, we can expect improved computer vision algorithms in the future. Color
work in the past has similarly concentrated on developing sophisticated algorithms

3-18

RESEARCH IN IMAGE UNDERSTANDING

for exploiting very simple color models, but a more realistic analysis technique has
recently been proposed. Shadows have been used by a number of people for
simple analysis such as locating buildings in aerial photographs, and a more com-
plex theory already exists that relates surface orientations to shapes of shadows in
the image.

A number of problems plague this kind of research, however, including the current
inability to model real complexities of illumination and reflection, and the nagging
feeling that humans don't seem to rely upon very quantitative analysis of optical
properties of materials and illumination. These questions are also addressed.

[Smith 84] Smith, D., and T. Kanade.
Autonomous Scene Descriptions with Range Imagery.
In Lee S. Baumann, Editor, Proceedings of the DARPA Image Understanding Workshop,

Science Applications, Inc., MacLean, VA, October, 1984.
This paper presents a program to produce object-centered three-dimensional descrip-

tions starting from point-wise 3D range data obtained by a light-stripe rangefinder.
A careful geometrical analysis shows that contours which appear in light-stripe
range images can be classified into eight types, each with different characteristics in
occluding vs. occluded and different camera/illuminator relationships. Starting
with detecting these contours in the iconic range image, the descriptions are
generated moving up the hierarchy of contour, surface, object, to scene. We use
conical and cylindrical surfaces as primitives. In this process, we exploit the fact
that coherent relationships, such as symmetry, collinearity, and being coaxial,
which are present among lower-level elements in the hierarchy allow us to
hypothesize upper-level elements. The resultant descriptions are used for match-
ing and recognizing objects. The analysis program has been applied to complex
scenes containing cups, pans, and toy shovels.

[Specker 83] Specker, P.
A Post-Processing Algorithm for Time Domain Pitch Trackers.
Technical Report CMU-CS-83-104, Carnegie Mellon University, Computer Science Depart-

ment,
January, 1983.

This paper describes a powerful post-processing algorithm for time-domain pitch track-
ers. On two successive passes, the post-processing algorithm eliminates errors
produced during a first pass by a time-domain pitch tracker. During the second
pass, incorrect pitch values are detected as outliers by computing the distribution
of values over a sliding 80 msec window. During the third pass (based on artificial
intelligence techniques), remaining pitch pulses are used as anchor points to
reconstruct the pitch train from the original wavefoim. The algorithm produced a
decrease in the error rate from 21% obtained with the original time domain pitch
tracker to 2% for isolated words and sentences produced in an office environment
by 3 male and 3 female talkers. In a noisy computer room errors decreased from
52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is
efficient, accurate, and resistant to noise. The fundamental frequency micro-

structure is tracked sufficiently well to be used in extracting phonetic features in a
feature-based recognition system.

[Thorpe 84] Thorpe, CE
Fido: Vision and Navigation for a Robot Rover.
PhD thesis, Carnegie Mellon University, Computer Science Department, December, 1984.

3-19

RFSEARCII IN IMAGE UNDERSTANDING

Fido is a vision and navigation system for a mobile robot. Using only stereo vision,
Fido is capable of guiding a robot through clutter to reach a goal. Fido starts with
no preloaded map of the world, and needs no special preparation of the environ-
ment; it works in the real world rather than in a toy environment. This thesis
describes Fido's major contributions in path relaxation, interest operators, con-
straints, and parallel decomposition. The thesis concludes with a recommendation
for hardware and software improvements for the current vehicles, and for the
design of future mobile robot systems.

3-20

MACI lINE INTELLIGENCE

4. Machine Intelligence

To significantly improve their performance, artificial intelligence systems need the ability to acquire,

represent, organize, and effectively utilize large amounts of knowledge. Our work in this area displays two

facets:

* Knowledge Representation addresses the automated acquisition of knowledge (factual, episodic,
procedural, heuristic), its internal organization, and the inference processes that access the resul-
tant knowledge bases to solve interesting problems.

e Knowledge Engineering addresses issues of the construction of computer systems that can solve
complex real-world problems by capturing and codifying human expertise.

This chapter reports on recent achievements in these broad areas of artificial intelligence research at Carnegie

Mellon University.

4.1. Knowledge Representation

Our principle objective in knowledge representation research is to explore methods that enable automated

systems to perform effectively in ill-structured problem domains, though the systems may have only incom-

plete or unreliable knowledge. Our central strategy is to investigate various methods in the context of

well-defined problems (rather than in vacuo) such as robot planning, algorithm design, massively-parallel

architectures, and counterplanning scenarios such as playing chess. These task areas serve merely as vehicles

for discovering and validating general problem-solving methods. Creating and refining the methods advances

artificial intelligence.

During our investigations we focused on developing substantial cognitive architectures that can learn, solve

problems, plan. and reason across varied task domains. The NETL and Boltzmann projects examine how to

construct massively parallel associative memories, realizable (in principle) directly on the hardware. The Soar

architecture provides a universal problem-solving engine that unifies all the weak methods (heur stic search,

means-ends analysis, etc.) and can improve its performance with experience by chunking search-control

knowledge. Prodigy is a learning apprentice system: a general problem solver that can take instruction,

explore its environment, and analyze its own behavior to achieve expert-level behavior within a large problem

class, chiefly complex planning domains. Additionally, we are developing and refining more well-defined

techniques, such as transformational and derivational analogy, application coefficients for heuristic evaluation

functions, algorithm design methods, and knowledge acquisition techniques for expert systems. The follow-

ing sections discuss specific projects in greater detail.

let

4-1

MACHINE INTELUGENCE

4.1.1. Machine Learning

We view machine learning as an integral part of planning and problem-solving where the learner must

acquire both problem-solving expertise in general or specific domains and more transitional facts and general

concepts. Our main accomplishments in the reporting period are summarized below:

* We developed a problem-solving method called transformnational analogy, capable of exploiting
past experience by transforming solutions of related problems into the solution of the new
problem at hand [Carbonell 82]. The primary benefit was a qualitative speedup in problem-
solving as the system's relevant experience in related areas could be transferred and exploited.
rather than rederived at much cost in combinatorial search. Secondary benefits included the
automated induction of general plans from multiple analogically-related solutions to similar
problems. In essence, transformational analogy provided the grist for an inductive generalization
engine, one capable of abstracting general plans from the shared aspects of multiple similar-
instance solutions. These general plans can be applied directly with little need for back-to-basics
problem-solving, or even analogical transfer. Of course, for qualitatively different classes of
problems, the general problem-solver is still required. In such a manner, our Aries problem-
solving systems can learn from experience-and can solve, effectively and quickly, complex
problems in familiar areas, but must resort to the much slower step-by-step exploration of the
problem space for less familiar areas.

* Subsequently we developed the derivational analogy problem-solving method to augment the
earlier transformational analogy paradigm. This method transfers strategies successful in similar
past problem-solving instances solve new, possibly more complex problems and serves as a basis
for inductive generalization of new planning methods. Thus, derivational analogy serves to learn
not just general plans, but planning strategies. Those which are transferred from similar problem-
solving episodes are the strategies themselves and the justification of why they worked (or why
they failed to work). Derivational analogy is a central technique incorporated into the Prodigy
and World Modellers projects discussed below.

e Recently we designed and implemented the first version of the world modellers robotic simulator
[Hood 82]. The system's three-dimensional, Newtonian physics simulator enables exploration
and verification of robotic planning and learning techniques without requiring a "real" robot-
and all the difficult vision and locomotion problems that entails. Our work investigates
fractioning, causal attribution and T-macro techniques for focused learning in the reactive simula-
tion environment. The ability to run goal-directed experiments in a reactive environment, to
reason about their effects, to formulate hypotheses explaining why reality deviates from expec-
tations, and to design further experiments seeking to confirm, augment or falsify these hypotheses
in a rational symbolic manner is a crucial component of learning heretofore ignored by most of
the symbolic-reasoning/Al machine-learning community.

* The Soar and Boltzmann projects contain significant machine learning components in addition to
their central concern with building a general cognitive architecture.

4.1.2. Adversarial Problem Solving

4-2

MACHINE INTELLIGENCE

Representing Uncertain Knowledge with Continuous Functions

An important aspect of intelligence is arriving at conclusions in the absence of complete knowledge or in

the presence of uncertain future events. Uncertain knowledge must be represented continuously and united

effectively with symbolic knowledge. The advent of application coefficients in non-linear heuristic evaluation

functions has made the integration of uncertain knowledge with symbolic knowledge possible [Berliner 81].

We have successfully developed two direct descendants of this new technology: lago, our world-champion

Othello-playing program [Rosenbloom 81], and BKG, our equally successful backgammon program.

The performance of BKG, which defeated the World Backgammon Champion, improved greatly when we

changed its knowledge representation from the form of rules to continuous functions [Ackley 83]. A

question coming out of this work is how such continuous knowledge can be communicated to the outside

world, since we must convert to a discrete representation and find words that match the concepts being

expressed. The QBKG system [Berliner 82] was able to compare a user-selected backgammon move to BKG's

own best choice, then give a detailed analysis of the pros and cons of each move. QBKG has made a

considerable impression on the expert system field, where little had been done with continuous knowledge

representations prior to our research. We have distributed over 2000 copies of the QBKG System report in

response to requests.

The B* search is still demonstrably the best selective search for adversary problems. In his work with the B*

algorithm, Palay discovered that substituting distribution functions for ranges in representing node values

significantly improved B's performance [Palay 83]. He showed this in a series of simulations using standard

chess tactics problems. However, manipulating distributions and searching distribution data remain ex-

tremely time consuming. Implementing a practical system awaits hardware that can efficiently accomplish

these taskL

Using Chunking to Solve Chess Pawn Endgames

When using simple representations in evaluating competitive situations like chess, the system must employ

search techniques to find consequences undiscerned by the representation used. For example, when an

evaluation function examines only the roles of single pieces, it misses much of what could be understood by

examining interactions among related pieces. The latter strategy involves what psychologists call "chunking"

and we use that term when describing our work.

Examining a chess board as a set of piece-sets rather than as a set of single pieces provides a more profound

representation of the situation. Campbell and Berliner developed such a representation in the chess pawn

endgame they studied [Campbell 831. They devised a method of chunking the various possible configurations

and the resulting Chunker program [Berliner 83] played certain positions in its domain 1013 times faster than

4-3

MAClINE INTELUGENCE

the best programs using the old representation. Chunker found two mistakes in the literature relating to this

endgame, though this particular game has been the subject of study for over 300 years. Chunker, now a

complete master of its domain, makes no mistakes in assessing any position in this endgame. Campbell's and

Berliner's approach saves many orders of magnitude of search. They have expanded their work to include the

entire domain of chess pawn endgames.

Massive Search using Constraint Satisfaction

Berliner developed a program named Superpuzz that solves card game puzzles. Though equipped with an

excellent knowledge function and a rapid search algorithm, Superpuzz initially failed to outperform its

creator. After Berliner added constraint satisfaction methods that ruled out branches of the search deter-

mined not to contain any possible solutions, Superpuzz always outperformed Berliner and it became highly

improbable a human would find better solutions.

Berliner studied three variants of the puzzle along with several different search techniques and evaluation

functions [Berliner 84]. He found that the constraint satisfaction technique helped selective (best-first)

searches with knowledgeable evaluation functions significantly more than it aided other searches. He also

discovered that a method he calls "adventurousness," which gives greater credit to achievement than debit for

effort expended effort, decreases time-to-solution in all search paradigms.

4.1.3. Massively Parallel Cognitive Architectures

A critical problem in knowledge representation is storing and accessing immense amounts of real-world

knowledge. Our research in this area led to the design and development of the NETL system, a specialized,

massively parallel machine architecture. Essentially, NET is a semantic network data structure with a very

simple hardware device representing each network node and link. Its design allows it to solve search and

inference problems that had proven intractable to the traditional serial heuristic approaches.

*During the 1981-84 period, our NETL research emphasized two themes: developing a practical approach to

implementing NETL in hardware and developing a solid formal understanding of the knowledge represen-

tations it uses, particularly in the area of default reasoning and exceptions. The first theme led to several

preliminary designs for a million-element NETL machine and inspired the Connection Machine work at MIT.

The second theme led to a formal mathematical theory of inheritance [Touretzky 84] that has been influential

in the knowledge representation community.

In time, we shifted our emphasis away from NETL, where knowledge is tied to a specific hardware element,

* to the Boltzmann Machine architecture [Fahiman 83). The Boltzmann architecture has three advantages: first,

it can extract new knowledge from examples, rather than requiring each new fact to be input by hand; second,

MACHINE INTELUGENCE

it employs a distributed representation that is inherently fault-tolerant and therefore better suited for very

large-scale VLSI implementations', third, a Boltzmann machine resembles a neural network and may provide

us with some useful models for understanding information processing in the brain. We continue to pursue

the Boltzmann approach vigorously and it has given rise to an entire family of related architectures.

p 4.1.4. A Universal Problem-Solving Architecture

Within this contract period we developed an architecture for general intelligence, called Soar [Laird 84a],

that unites many of the important ideas and mechanisms concerning production systems and problem spaces

we have explored for twenty years. Soar adopts a uniform view that all cognitive activity can be represented

as search in a problem space [Newell 80F-whether problem-solving or routine action. Thus, Soar is a

problem-solving architecture whose primitive actions are selecting problem spaces, states, and operators, and

applying the operators by selecting another implementation problem space. We realized Soar within a

production system (a slight modification of Oi'r [Forgy 84]) that uses both search control and the implemen-

tation of primitive operators. From the expert systems point-of-view, Soar provides a production system

framework that is hierarchically organized in terms of problem spaces, instead of a single flat set of rules.

The Soar framework embodies several other important discoveries and integrations, among them the prin-

ciple of universal subgooling jaird MIb. Soar, as with many other systems, focuses its attention by te

difficulties it encounters, but because the architecture is cast at the problem-solving level, these difficulties

(called impasses) can all be detected directly by the architecture. Thus the architecture itself can detect the

need for a subgoal, develop its initial characterization, and set it up. This subgoaling method has far-reaching

consequences. For example, it permits Soar to recognize instantly when any goal at any level in the goal stack

has succeeded or failed, and to jump back immediately to continue from that point. Impasses become the

fundamental basis for detecting conflict resolution needs. The production system no longer has a conflict-

resolution stage, but instead lets all productions fire in parallel.

The study of weak methods (generate and test, means-ends analysis, etc.) has been a significant part of our

research effort since the late 1960s when it became clear how important they are in all problem-solving

systems. Soar represents an advance in implementing weak methods. In effect, when provided with the

essential knowledge on which a particular weak method is based, Soar behaves according to that method.

This was originally called the universal weak method [Lard 83], although it now seems preferable to term this

simply an implicit mode of methods representation.

Each weak method of course builds on and exploits some explicit knowledge about the task structure. A key

issue is whether a production system needs additional procedural knowledge to exploit the task knowledge.

4-5

MACliINE INTELUGENCE

Standard programming systems need additional procedural knowledge, Soar doesn't. This occurs because:

(1) all the weak methods turn out to be search methods fundamentally and Soar embodies heuristic search in

its very architecture; (2) Soar's use of production systems to represent search control provides a decom-

position that permits each bit of heuristic knowledge to be given separately; and (3) the weak methods are

themselves quite simple, being in effect the "obvious" ways of exploiting a small amount of knowledge about

the task.

Soar also learns as it solves problems. Rosenbloom and Newell researched how human performance at

problem-solving improves with practice [Rosenbloom 831. They developed the theory that the memory

organization method called chunking in Cognitive Psychology provides a sufficient mechanism for improved

performance. Then they implemented the chunking theory in a series of production system architectures

(xAPs1 and XAPS2 [Rosenbloom 82]), and demonstrated that creating chunks (as productions) not only per-

mits continuous improvement, but follows the same quantitative law of improvement as humans do (the

so-called power law of practice [Rosenbloom 82]). In late 1984 they transferred their ideas into Soar's

problem-solving architecture; now Soar chunks all of its goal results. If Soar ever needs to solve a previously

solved goal, it will be able to do so directly without re-solving the problem. The chunking mechanism seemed

at first to be one of pure practice, but now appears to be a general mechanism that transfers to new situations.

They are now exploring the hypothesis of whether it is sufficient for all types of learning.

The Soar architecture unifies many of our research advances made during the 1981-84 period and preceding

* research contracts as well. We prepared a major demonstration of Soar by developing Ri-Soar [Rosenbloom

84] that accomplished the same task as R1, the 3300-rule vAx-configuring system [McDermott 821, yet in-

cluded only 25% of Ri's functionality. Ri-Soar is an example of how a general problem-solving system can

be transformed into a knowledge-intensive system by the addition of search control. It demonstrates that

chunking is sufficient to let the Ri-Soar system develop this same search control from its own experience,

supporting the basic proposition that Soar learns about whatever task it tackles.

4.2. Knowledge Engineering

4.2.1. An Algorithm Design Assistant

Kant and Newell have been exploring the domain of algorithm design as an instance of problem-solving

and expert behavior. They assert that algorithm design demands much more intellectually in comparison to

most expert system tasks, that it combines problem-solving and expert behavior in important ways, and that it

may offer a new approach to program synthesis, in that the output of an algorithm design system provides a

new knowledge structure for specifying the program synthesis task. During the contract period we moved

46

MACHINE INTELLGENCE

from an initial formulation of the task and the selection of a specific domain, geometric algorithms (such as

designing an algorithm for finding thc convex-hull planar point-set). We then developed the basic represen-

tation and methods (by analyzing in dctail thc behavior of human experts), to the design and implementation

of a system, Designer, for doing the task [Kant 84J.

We tackled a wide range of issues in the Designcr project, including a representation for partially specified

algorithms (as a data-flow scheme with associated assertions) and the symbolic execution of these partial

algorithms, in a more general framework than has usually been attempted in programming systems schemes

for symbolic execution. We have advanced it to a point where it can execute many (partial) algorithms and

can design some simple ones, and are nearing our initial benchmark task, designing the convex-hull algo-

rithm.

Designer has grown into a very large system and incorporates both a frame system and a production system.

Due to the successful implementation of Soar, with its extremely clean structure, and to some personnel

changes, we are in the midst of reimplementing Designer in Soar.

4.2.2. Architectures for Fast, Intelligent Search

In order to speed systematic analysis in adversarial search (e.g. minimax with alpha.-beta pruning), we

investigated new methods for parallel decomposition and for performing the search at the silicon level. We

chose chess as the test domain for this emerging general technology, and to that end we designed and

fabricated custom chips for different aspects of the game-some particular to chess, others more general to

decision-making that requires systematic search. These latter chips operate by first downloading a programm-

able decision function and later executing the function at blinding speed.

4.2.3. Massive Search Systems

Intelligent systems can be viewed as working in a space of directly available knowledge, on one dimension,

while searching to obtain more knowledge in a second dimension. Any specific system employs some

combination of these two activities. Humans occupy the high-knowledge, low-search part of the space. In

general, expert systems designers have explored that area, though all regions of the space are of interest.

Game playing programs, especially for chess, have become a mainstay in the high-search, low-knowledge

area, demonstrating that improving the search was the most effective way to attain high performance. We

have been been exploring this path for well over ten years. Within the scope of the present contract, we haveU
made an important breakthrough with a demonstration of a chess system (Hitech) that is substantially better

than any existing system [Ebeling 841.

4-7

MACHINE INTEL11GENCE

Hitech is a high-search, low-knowledge system, not a pure mass-search system, though the knowledge it

contains is extremely important. Its performance has improved significantly as we've added knowledge, and

we have not yet found the system's performance limits. What Hitech does show is that solutions in the

high-search range are finally effective in achieving excellent performance in a task in which humans also

achieve excellence, but by a radically different combination of search and knowledge.

Hitech consists of a workstation host plus a special machine that searches about 175.000 positions per

second. The machine is organized as a set of processors on a common bus and consists of a move generator

(64 copies of a VLSI chip specially designed via the MOSIS facility), a set of evaluation modules, and a memory

unit that remembers previously explored positions and their values. The whole system operates by download-

ing the specific evaluations to be made in the current position, then searching up to 30 million positions to

find the preferred move. Hitech contains all techniques that have proved valuable in our decade of research:

iterative deepening, adaptive coefficients (the SNAC procedure, developed under this research program in

building BKG, our world-champion backgammon program), recalling large numbers of prior search posi-

tions, etc. Hitech won the recent ACM chess tournament against all other programs, and in play against

humans earned an official rating of about 2070, well into the Master range.

4.2.4. Prodigy: A Learning Apprentice

In 1984 we embarked upon the Prodigy learning apprentice project. The system models an insightfll

student, one capable of general problem solving but with little initial knowledge of any given domain. Prodigy

gradually builds up expertise through:

" Introspective assessment and analytical improvement of its planning processes

" Accepting human instruction on domain-specific information, including suggestions for making
the new information operational

" Formulating experiments (either questions to the teacher or procedures to be carried out in its
environment)

* Analytic generalization where a strong domain theory is available, or empirical generalization
when domain knowledge for provably correct generalizations is lacking

Goal regression and weakest-precondition analysis are the central tools for analytic generalization. So far we

have conducted experiments to gather missing information required for weakest-precondition analysis, and to

establish correct analogical mappingL

+-3

MACHINE INTEUGENCE

4.2.5. Speech Recognition

Our research goal in speech recognition is to generate and verify general techniques for developing high-

performance, special-purpose, knowledge-based systems. The speech domain allows us to formulate and

validate some of these techniques in a practical task. The following paragraphs discuss the two lower-level

aspects of this research. At the uppermost level, this work blends into the User Interface Research discussed

in Chapter 7. See section 7.5 for a discussion of the voice message system.

Acoustic /Phonetic Recognition

Two challenges in computer speech recognition are (a) performing speaker-independent recognition, and

(b) discriminating among speech sounds that are acoustically similar, such as [b] and [d]. Prior to 1981, speech

recognition systems were speaker-dependent and required each new speaker to train the system to his or her

voice. The systems made many errors when the vocabulary items were acoustically similar.

A main goal of CMU speech research between 1980 and 1982 was to demonstrate the ability to perform

speaker-independent recognition of confusable words [Lasry 84]. In order to make the problem tractable, we

decided to recognize letters of the English alphabet spoken in isolation. This task domain provides a useful

and well defined vocabulary that contains many fine phonetic distinctions, as in the set B, D, E, P, T, G, V, Z,

C [Waibel 81].

We decided to build an expert system to model the performance of an expert spectrogramn reader. The

research involved studying speech spectrograms of letters spoken by many speakers, to discover the recog-

nition features needed for each letter; developing feature-measuring algorithms to quantify the perceptually

relevant features'. and using a multivariate classifier to combine the feature values for letter choice decisions.

Our research produced a speaker-independent, isolated letter recognition system called Feature [Stern 83]

Feature performed at levels of accuracy significantly better than any previous system. In speaker-

independent mode, letters were correctly recognized about 90% of the time. When the system was allowed to

automatically learn about the speech patterns of each user, performance rose to 95%.

Word Recognition for Large Vocabularies

The Word Recognition project at CMU has investigated two major topics: efficient search algorithms and

automatic generation of lexical representations. Our goal is to develop a word recognition technique that

deals flexibly with the requirements of large vocabulary recognition.

Controlling the size of the search space becomes a critical problem as the size of a recognition vocabulary

increases. Research on search techniques has focused on identifying effective constraints. Rudnicky, together

with Lehmann, has developed a search algorithm that makes use of several sources of constraint to improve

search efficiency [Rudnicky 82]. Constraint is provided by using two, independently generated speech encod-

4-9

MACHINE INTELLIGENCE

ings: a phonetic lattice and a coarse-class lattice. The coarse lattice is used to identify syllable nuclei and

thereby identify potential word locations. The coarse-class lattice is also used to provide a consistency check.

Phonetic and coarse lattice must agree on their description of the input in order for the search to proceed.

Together these constraints produce approximately a 40-fold reduction in search for a typical utterance, as well

as (somewhat surprisingly) an increase in recognition accuracy [Waibel 82].

Traditional recognition schemes require a substantial effort to construct an accurate representation through

training. Such techniques become less feasible as vocabulary size increases. The goal of our research in this

area is to develop techniques for automatically generating reliable and complete descriptions of lexical items.

Rudnicky has developed a system for the automatic transformation of lexical baseforms ("dictionary

pronunciation") into lexical networks using declaratively specified phonological rules. Hand-labeled speech

was analyzed to produce these phonological rules.

4.2.6. SPAM: Rule-Based Systems for Aerial Photointerpretation

McKeown has begun to explore and develop the use of rule-based systems for interpreting complex, high

resolution aerial photography [McKeown 83]. SP Am, a System for Photointerpretation of Airports using MAP

(see Chapter 3), interprets scenes of the National Airport in Washington, D.C. The system uses map descrip-

tions of the airport layout, and tools for spatial reasoning about size. shape, and position of various airport

features. We focus on building a knowledge base to control image processing primitives and to guide the

image interpretation process. Our long term goal is to develop systems that maintain a world database of

previous events. The world database's expert level knowledge will be able to predict areas for fruitful analysis

and will integrate the analysis" results into a coherent model.

Combining map knowledge and a rule-based system for scene analysis is a new approach to model-based

vision that allows us to decouple the task domain from the low-level image processing tools and to integrate

spatial, general model, and site-specific knowledge within a single framework. Using local evidence, it is

possible to make weak interpretations about the mapping of image segments to a model, and to trigger

continually more refined segmentation hypotheses. Interpretation is performed by recognizing that only a

small subset of the large number of hypotheses are mutually consistent. Inconsistencies can be detected by

analysis of geometric relationships between local features and the application of world knowledge, such as the

typical length of runways, size of hangars and maintenance buildings, and their relative spatial organization

within a general airport cene.

Currently SPAM can extract and identify some runways, taxiways, grassy areas, and buildings in several

images of the National Airport. It cannot yet, however, recognize a complete airport scene that satisfies its

4-10

MACHINE INTELLIGENCE

internal map model. Our research continues in several areas including reliable low-level feature extraction

from the imagery, and the design and implementation of effective recognition strategies using the rule-based

approach. We believe that integrating map knowledge. image processing tools, and rule-based control and

recognition strategies will be prove a powerful computational organization for automated image analysis.

4-11

MACHINE INTELLIGENCE

4.3. Bibliography

[Ackley 831 Ackley, D.H. and HJ. Berliner.
The QBKG system: Knowledge representation for producing and explaining judgements.
Technical Report CMU-CS-83-116, Carnegie-Mellon University, Computer Science

Department,
March. 1983.

The QBKG system plays backgammon and produces critical analyses of possible moves
for a wide variety of backgammon positions, using a hierarchically structured,
non-discrete form of knowledge representation. The largely non-searching control
structure emphasizes judgemental processes at the expense of reasoning processes,
meaning that the system's behavior is determined by the estimated usefulness of its
immediate actions rather than upon hypothesized longer-term results such as
would be produced by a tree-searching algorithm. This report describes some of
the principles by which knowledge can be represented so as to facilitate high-
quality judgements in a domain, discusses issues arising from the need to be able to
explain how a particular judgement was reached, and argues that sophisticated
judgemental ability is a critical feature for systems operating in complex, incom-
pletely understood environments.

[Berliner 81] Berliner, HJ.
Search vs. knowledge: An analysis in the domain of games.
Technical Report CMU-CS-82-104, Carnegie-Mellon University, Computer Science

Department,
November, 198L

We examine computer games in order to develop concepts of the relative roles of
knowledge and search. The paper concentrates on the relation between knowledge
applied at leaf nodes of a search and the depth of the search that is being con-
ducted. Each knowledge of an advantage has a projection ability (time to convert
to a more permanent advantage) associated with iL The best programs appear to
have the longest projection ability knowledge in them. If the application of
knowledge forces a single view of a terminal situation, this may at times be very
wrong. We consider the advantages of knowledge delivering a range as its output,
a method for which some theory exists, but which is as yet unproven.

[Berliner 821 Berliner, HJ. and D.H. Ackley.
The QBKG System: Generating Explanations from a Non-Discrete Knowledge Represen-

tation.
In Proceedings of the National Conference on Artificial Intelligence, Pages 213-216. The

American Association for Artificial Intelligence, August, 1982.
The QBKG system produces critical analyses of possible moves for a wide variety of

backgammon positions using a hierarchically structured, non-discrete form of
knowledge representation. This report compares discrete and continuous
representations and reasoning systems, addressing issues of competence, robust-
ness, and explainability. The QBKG system is described and demonstrated.

4-12

MACNINE INTELLIGENCE

[Berliner 831 Berliner. HJ. and M. Campbell.
Using Chunking to Solve Chess Pawn Endgames.
Artificial Intelligence23, April, 1983.
Also presented at the Second International Symposium on Artificial Intelligence and the

Game of Chess, Milan, Italy, May, 1983. Also published as CMU-CSD technical report
CMU-CS-83-122.
Chunker is a chess program that uses chunked knowledge to achieve success. Its

domain is a subset .f king and pawn endings in chess that has been studied for
over 300 years. Chunker has a large library of chunk instances where each chunk
type has a property list and each instance has a set of values for these properties.
This allows Chunker to reason about positions that come up in the search that
would otherwise have to be handled by means of additional search. Thus the
program is able to solve the most difficult problem of its present domain (a
problem that would require 45 ply of search and on the order of 1013 years of CPU
time to be solved by the best of present day chess programs) in 18 ply and one
minute of CPU time. Further, Chunker is undoubtedly the world's foremost
expert in its domain, and has discovered 2 mistakes in the literature and has been
instrumental in discovering a new theorem about the domain that allows the as-
sessing of positions with a new degree of ease and confidence. In this paper we
show how the libraries are compiled, how Chunker works, and discuss our plans
for extending it to play the whole domain of king and pawn endings.

[Berliner 84] Berliner, H. and G. Goetsch.
A Quantitative Study of Search Methods and the Effect of Constraint Satisfaction.
Technical Report CMU-CS-84-147, Carnegie-Mellon University,
July, 1984.

While certain guidelines for selecting search methods have emerged over the years, and
while the success of certain methods has been well documented, there have been
few, if any, studies of a variety of search methods as the difficulty of a particular
problem changes. This study of a solitaire puzzle that can be incarnated in a
variety of problem sizes and hence difficulties, attempts to fill this vacuum. We
select four search paradigms: A*, Best-first with a simple evaluation function
(BFI), Best-first with a complex evaluation function (BF2), and Depth-First with
branch and bound and iterative deepening (DF), to represent the best of a variety
of searching methods for non-adversary problems. All methods except BF2 use
the same knowledge; i.e. a measure of the minimum number of moves that it
would take to win the current situation. DF applies this measure only at maximum
depth, while the other two use it for selecting which node to expand next. Each of
these methods are tested with and without a constraint satisfaction procedure.

As expected, the most informed search (BF2) does better than the less informed as the
problems get progressively more difficult. One important and apparently general
result is that constraint satisfaction provides the greatest gain when coupled with
the most informed algorithm (BF2). We found it surprising that BF1, which uses
the same evaluation function as A* but with a different coefficient, far outper-
formed A* in terms of work required at about a 5% reduction in the quality of the
(otherwise) optimal solution. We conjecture that Best-first searches get their
power from an adventurous coefficient which we define in the text. Adventurous-ness can be thought of as a primitive form of planning.

413

MACI lINE INTELUGENCE

(Campbell 83) CampbellM. and H.J. Berliner.
A Chess Program that Chunks.
In Proceedings of the National Conference on Artificial Intelligence, Pages 49-53. AAAI,

August, 1983.
Chunker is a chess program that uses chunked knowledge to achieve sucess. Its domain

is a subset of king and pawn endings in chess that has been studied for over 300
years. Chunker has a large library of chunk instances where each chunk type has a
property list and each instance has a set of values for these properties. This allows
Chunker to reason about positions that come up in the search that would otherwise
have to be handled by means of additional search. Thus the program is able to
solve the most difficult problem of its present domain (a problem that would
require 45 ply of search and on the order of 1013 years of CPU time to be solved by
the best of present day chess programs) in 18 ply and one minute of CPU time.
Further, Chunker is undoubtedly the world's foremost expert in its domain, and
has discovered two mistakes in the literature and has been instrumental in dis-
covering a new theorem about the domain that allows the assessing of positions
with a new degree of case and confidence. In this paper we describe Chunker's
structure and peformance, and discuss our plans for extending it to play the whole
domain of king and pawn endings.

(Carbonell 82) Carbonell, J.G.
Learning by Analogy: Formulating and Generalizing Plans from Past Experience.
Technical Report CMU-CS-82-126, Carnegie-Mellon University, Computer Science

Department.
June, 1982.

Analogical reasoning is a powerful mechanism for exploiting past experience in plan-
ning and problem solving. This paper outlines a theory of analogical problem
solving based on an extension to means-end analysis. An analogical transfor-
mation process is developed to extract knowledge from past successful problem
solving situations that bear strong similarity to the current problem. Then, the
investigation focuses on exploiting and extending the analogical reasoning model
to generate useful exemplary solutions to related problems from which more
general plans can be induced and refined. Starting with a general analogical
inference engine, problem solving experience is, in essence, compiled incremen-
tally into effective procedures that solve various classes of problems in an increas-
ingly reliable and direct manner.

(Cole 83] Cole, R., R. Stern, S. Brill, M. Phillips, A. Pliant and P. Specker.
Feature-Based, Speaker-Independent, Isolated Letter Recognition.
In ICASSP 83 Proceedings, IEEE ASSP, 1983.

[Cole 84] Cole, R.A., R.M. Stem, and MJ. Lasry.
Performing Fine Phonetic Distinctions: Templates vs. Features,
In J. Perkell, et al., Invariance and Variability of Features in Spoken English Letters.

Lawrence Erlbaum, New York, 1984.
This paper compares two basic approaches to computer speech recognition, template

matching and feature-based recognition. In template matching, works are
represented as spectral templates. During recognition, the input is compared to
each stored template, time-frame by time-frame, and the best match is the recog-
nized word. Feature-based systems extract phonetic features from the signal, such
as formant frequencies and formant trajectories, and classify words in terms of an

4-14

MACHINE INTFLLGENCE

expected set of feature values for each work. We shtn that template matching
systems are unable to perform fine phonetic dlsuncons A fciurc-hased 'ystem
is described which performs fine phonetic distincion in d spcaker-independcnt
mode. It is shown that the success of the system depends c rnlcall) on knowledge
about the sources of variation in speech.

[Ebeling 84] Ebeling, Carl, and Palay, Andrew.
The Design and Implementation of a VLSI Chess Move Generator.
In Proceedings of the Ilth Annual International Symposium on (omputer Architecture. IEEE

Society, June, 1984.
Communication is a basic problem when using VISI technology to implement large

parallel circuits. Valuable chip area must be used to run wires connecting com-
ponents on a chip and current packaging technology restricts the amount of com-
munication that can cross chip boundaries. This paper presents a large parallel
architecture for generating moves in chess and shows how it can be restructured to
reduce communication and permit a straightforward VLSI implementation with-
out any performance loss. The result is a move generator comprising 64 identical
custom chips performing at a rate of 500.000 moves per second, performance that
is comparable to the existing move generator.

The success of the architecture of a component module like a chess move generator
depends not only on its performance but on how well it meshes with the rest of the
system. We discuss the requirements of a chess move generator in the context of a
chess-playing system and describe how each of these are met by our design.
Details of the chip design are presented along with a description of how the move
generator is built using identical chips.

[Fahlman 82] Fahlman, S.F.
Three Flavors of Parallelism.
In Proceedings of the Fourth National Conference, Canadian Society for Studies of

Intelligence, May, 1982.
This paper explores the relative costs and powers of three different kinds of parallel

computing architecture that have been proposed for use in Al. Instead of parceling
a problem out to a small, fixed number of processors, all of these systems employ a
much higher degree of parallelism: they provide enough processing elements that
we can assign a separate processor to every assertion in a large knowledge base, to
every pixel in an image, or to every work in a speech system's lexicon. But, while
these three kinds of system share this general orientation toward the massive use of
parallelism, they differ markedly in the complexity of their processing elements
and interconnections. They also differ in the kinds of problems that they can attack
in parallel, without resorting to serial processing techniques. In order of increasing
complexity and power, these categories are marker-passing systems, value-passing
systems, and message-passing systems.

[Fahlman 83] Fahiman. S.E., G.E. Hinton, and TJ. Sejnowski.
Massively Parallel Architectures for AL: NETL, Thistle, and Boltzmann Machines.
In Proceedings of the AAAI-83 Conference, AAAI, August, 1983.
August 22-26. 1983, in Washington, DC. Nominated, Publisher's Prize for Best Paper.

It is becoming increasingly apparent that some aspects of intelligent behavior require
enormous computational power and that some sort of massively parallel comput-
ing architecture is the most plausible way to deliver such power. Parallelism,
rather than raw speed of the computing elements, seems to be the way that the

4-15

MACHINE INTELIGENCE

brain gets such jobs done. But even if the need for massive parallelism is admitted,
there is still the question of what kind of parallel architecture best fits the needs of
various Al tasks.

In this paper we will attempt to isolate a number of basic computational tasks that an
intelligent system must perform. We will describe several families of massively
parallel computing architectures, and we will see which of these computational
tasks can be handled by each of these families. In particular, we will describe a
new architecture, which we call the Bolzmann machine, whose abilities appear to
include a number of tasks that are inefficient or impossible on the other architec-

[Forgy 81] Forgy, C. L
OPS5 User's Manual.
Technical Report CMU-CS-81-135, Carnegie-Mellon University, Computer Science

Department,
July, 1981.

This is a combination introductory and reference manual for OPS5, a programming
language for production systems. OPS5 is used primarily for applications in the
areas of artificial intelligence, cognitive psychology, and expert systems. OPS5
interpreters have been implemented in LISP and BLISS.

[Forgy 84] Forgy, C.L
The 0PS83 Report.
Technical Report CMU-CS-84-133, Carnegie-Mellon University, Computer Science

Department,
May, 1984.

OPS83 is a programming language for expert systems applications. It combines the
rule-based programming paradigm of the earlier versions of OPS with the
procedural programming paradigm of conventional programming languages. It is
less restrictive than the earlier versions of OPS in several respects, including the
data structures permitted in working memory and the kinds of expressions that can
be used in the LHSs of rules. OPS83 is a compiler-based language, and it provides
for separate compilation of modules with full type checking across modules.

[Hood 821 Hood, G. and J.G. Carbonell.
The World Modelers Project: Constructing a Simulated Environment to Aid Al Research.
In Proceedings of the Thirteenth Annual Conference on Modeling and Simulation, 1982.

The World Modelers Project is a physical simulation system designed to bridge the gap
between real-world sensory and manipulator robotics, and Artificial Intelligence
(AI) research on learning, problem solving, natural language processing and other
cognitive phenomena presently investigated without benefit of direct interaction
with the external world. In the simulation system, various 'organisms' controlled
by AI programs or human users can perceive and act upon the simulated world,
which in turn reflects changes caused by the (possibly concurrent) actions of or-
ganisms, according to internal laws of physics. This paper discusses the 3D simula-
tion system, the graphics-based multi-window user interface, the distributed im-
plementation, and implications for AI research.

4-16

.~~~~, .

MACIlINE INTEI iIGENCE

[Kant 841 Kant. E. and A. Newell.
Problem Solving Techniques for the Design of Algorithms.
Information Processing and Afanagemen120(1-2):97-118, 1984.
Also available as CMU-CSD technical report CMU-CS-82-145.

By studying the problem-solving techniques that people use to design algorithms we
can learn something about building systems that automatically derive algorithms
or assist human designers. In this paper we present a model of algorithm design
based on our analysis of the protocols of two subjects designing three convex hull
algorithms. The subjects work mainly in a data-flow problem space in which the
objects are representations of partially specified algorithms. A small number of
general-purpose operators construct and modify the representations; these
operators are adapted to the current problem state by means-ends analysis. The
problems space also includes knowledge-rich schemas such as divide and conquer
that subjects incorporate into their algorithms. A particularly versatile problem-
solving method in this problem space is symbolic execution, which can be used to
refine, verify, or explain components of an algorithm. The subjects also work in a
task-domain space about geometry. The interplay between problem solving in the
two spaces makes possible the process of discovery. We have observed that the
time a subject takes to design an algorithm is proportional to the number of com-
ponents in the algorithm's data-flow representation. Finally, the details of the
problem spaces provide a model for building a robust automated system.

[Korf 83] Korf, R. E.
Learning to Solve Problems by Searching for Macro-Operators.
Technical Report CMU-CS-83-138, Carnegie-Mellon University, Computer Science

Department,
July, 1983.
PhD Thesis.

This thesis explores the idea of learning efficient strategies for solving problems by
searching for macro-operators. A macro-operator, or macro for short, is simply a
sequence of operators chosen from the primitive operators of a problem. The
technique is particularly useful for problems with non-serializable subgoals, such as
Rubik's Cube, for which other weak methods fail. Both a problem-solving
program and a learning program are described in detail. The performance of these
programs is analyzed in terms of the number of macros required to solve all
problem instances, the length of the resulting solutions (expressed as the number
of primitive moves), and the amount of time necessary to learn the macros. In
addition, a theory of why the method works, and a characterizaion of the range of
problems for which it is useful are presented. The theory introduces a new type of
problem structure called operator decomposability. Finally, it is concluded that the
macro technique is a valuable addition to the class of weak methods, that macro-
operators constitute an interesting and important representation of knowledge, and
that searching for macros may be a useful general learning paradigm.

[Laird 83] Laird, J. and A. Newell.
A Universal Weak Method: Summary of Results.
In Proceedings of the IJCAI-83, Pages 771-773. International Joint Conference on Artificial

Intelligence, Los Altos, CA, June, 1983.
Also appears as CMU-CSD technical report CMU-CS-83-141.

The weak methods occur pervasively in AI systems and may form the basic methods for

4-17

MACHINE INTELIGENCE

all intelligent systems. The purpose of this paper is to characterize the weak
methods and to explain how and why they arise in intelligent systems. We propose
an organization, called a universal weak method, that provides functionality of all
the weak methods. A universal weak method is an organizational scheme for
knowledge that produces the appropriate search behavior given the available task-
domain knowledge. We present a problem solving architecture, called SOAR, in
which we realize a universal weak method. We then demonstrate the universal
weak method with a variety of weak methods on a set of tasks.

[Laird 84a] Laird, John E., Rosenbloom, Paul S., and Newell. Allen.
Towards Chunking as a General Learning Mechanism.
In Proceedings of AAAI-84 National Conference on Artificial Intelligence, Pages 188-192.

American Association for Artificial Intelligence, 1984.
Chunks have long been proposed as a basic organizational unit for human memory.

More recently chunks have been used to model human learning on simple
perceptual-motor skills. In this paper we describe recent progress in extending
chunking to be a general learning mechanism by implementing it within a general
problem solver. Using the Soar problem-solving architecture, we take significant
steps towards a general problem solver that can learn about all aspects of its be-
havior. We demonstrate chunking in Soar on three tasks: the Eight Puzzle, Tic-
Tac-Toe, and a part of the R1 computer-configuration task. Not only is improve-
ment with practice, but chunking also produces significant transfer of learned
behavior, and strategy aquisition.

[Laird 4b) Laird, J. R.
Universal Subgoaling.
Technical Report CMU-CS-84-129, Carnegie-Mellon University, Computer Science

Department,
May, 1984.

The goal of this thesis is to develop a problem-solving architecture where all ap-
propriate knowledge is brought to bear to control all aspects of problem-solving
behavior. Such an architecture allows the creation of completely reflective
problem solvers. We identify a specific capability called universal subgoaling that
together with previous work on a universal weak method makes this possible. With
universal subgoaling, subgoals arise whenever there is a difficulty in performing
the problem-solving functions. In a subgoal, the problem solver brings its
knowledge to bear to reason about and eliminate the difficulty. We identify a set
of requirements that must be met by any problem-solving paradigm and architec-
ture that realizes universal subgoaling. We then describe an implementation of
universal subgoaling within Soar, a production system based on search in a
problem space. We provide two demonstrations of universal subgoaling: (1) Soar
creates subgoals whenever difficulties arise in any aspect of problem solving, (2) it
is possible to encode the knowledge required to produce the weak methods so that
the knowledge is used whenever it is needed. As part of the second demonstration,
we provide a useful taxonomy of the weak methods based on the knowledge
required to encode in Soar.

[Lary 841 Lary, MJ. and R.M. Stem.
Unsupervised Adaptation to New Speakers in Feature-Based Letter Recognition.
In Proceedings of the IEEE International Conference on Acoustics Speech, and Signal

Processing, Pages 17.6.1-17.6.3. IEEE Society, 1984.

4-18

MACHINE INTELLIGENCE

This paper describes two new methods by which the CMU feature-based recognition
system can learn the acoustical characteristics of individual spcakcrs without feed-
back from the user. We have previously dcscribed how the system uses MAP
techniques to update its estimates of the mean values of features used by the
classifier in recognizing the letters of the English alphabet on the basis of a priori
information and labeled observations. In the first of the new procedures described
in this paper the system assumes a correct decision every time it classifies a new
utterance with a sufficiently high confidence level. In the second new procedure
the system adjusts its estimates of the means on the basis of their correlation with
the average values of the features over all utterances. In each case classification
performance using the unsupervised estimation procedures could equal that ob-
tained using speaker adaptation with feedback from the user, although which
method provided the better performance depended on which set of letters was
being classified.

[McDermott 82] McDermott, J.
Ri: A Rule-based Configurer of Computer Systems.
Artificial Intelligencel9(l):39-88, September, 1982.

R1 is a program that configures VAX-11/780 computer systems. Given a customer's
order, it determines what, if any, modifications have to be made to the order for
reasons of system functionality and produces a number of diagrams showing how
the various components of the order are to be associated. The program is currently
being used on a regular basis by Digital Equiptment Corporation's manufacturing
organization. R1 is implertiented as a production system. It uses Match as its
principal problem solving method: it has sufficient knowledge of the configuration
domain and of the peculiarities of the various configuration constraints that at each
step in the configuration process, it simply recognizes what to do. Consequently,
little search is required in order for it to configure a computer system.

[McKeown 831 McKeown, D.M., Jr., and J. McDermott.
Toward Expert Systems for Photo Interpretation.
In IEEE Trends and Applications 1983, Pages 33-39. May, 1983.
Available as reprint no. CH1887-9/83/0000/0033 from the IEEE Society, P.O. Box 80452,

Worldway Postal Center, Los Angeles, Ca. 90080.
In this paper we describe some preliminary results in the design and implementation of

a system for semi-automatic photo-interpretation of high resolution aerial
photographs. The system, SPAM, consists of three major components, an
image/map database, a collection of image processing tools, and a rule-based sys-
tem whose domain of expertise is commercial airports in general, and the National
Airport (Washington D.C.) in particular. We present our design rationale,
describe those components which have been implemented, and discuss design and
implementation currently in progress. Applications for such photo-interpretation
systems include cartography and decision support systems for situation assessment.

[McKeown 84] McKeown, D.M., W.A. Harvey, and J. McDermott.
Rule Based Interpretation of Aerial Imagery.
In Proceedings of the 1984 IEEE Workshop on Principles of Knowledge-Based Systems, 1984.

In this paper we describe the organization of a rule based system, SPAM, that uses map
and domain specific knowledge to interpret airport scenes. This research inves-
tigates the use of rule-based system for the control of image processing and inter-
pretation of results with a respect to a world model, as well as the representation of

4-19

MACHINE INTELUIGENCE

the world model within an image/map database. We present results on the inter-
pretation of an high resolution airport scene where the image segmentation has
been performed by a human and by a region-based imagesegmentation program.
The result of the system's analysis is characterized by the labeling if individual
regions in the image and the collection of these regions into consistent interpreta-
tions of the major components of an airport model. These interpretations are
ranked on the basis of their overall spatial and structural consistency. Some evalua-
tions based on the results from three evolutionary versions of SPAM are presented.

[Newell 80] Newell. A.
Reasoning Problem Solving and Decision Processes: The Problem Space as a Fundamental

Category.
Lawrence Erlbaum Associates, Hillsdale, NJ., 1980.
See Chapter 35.

The notion of a problem space is well known in the area of problem solving research,
both in cognitive psychology and artificial intelligence. The Problem Space
Hypothesis is enunciated that the scope of problem spaces is to be extended to all
symbolic cognitive activity. The chapter is devoted to explaining the nature of this
hypothesis and describing some of its potential implications, with no attempt at a
critical marshalling of the evidence pro and con. Two examples are used, one a
typical problem solving activity (the Tower of Hanoi) and the other syllogistic
reasoning. The latter is an example where the search behavior typical of problem
spaces is7 not clearly in evidence, so it provides a useful area to explore the exten-
sion of the concept. A focal issue used in the chapter is the origin of the numerous
flow diagrams that serve as theories of how subjects behave in tasks in the
psychological laboratory. On the Problem Space Hypothesis these flow diagrams
derive from the interaction of the task environment and the problem space.

[Palay 831 Palay, A.J.
Searching with Probabilities
Technical Report CMU-CS-83-145, Carnegie-Mellon University, Computer Science

Department,
July, 1983.

In this thesis we investigate two issues relating to heuristic search algorithms. The first
and most important issue addressed is the technique used to represent knowledge
within a search tree. Previous techniques have used either single values or ranges.
We demonstrate that probability distributions, using a modified B*-type search
algorithm, can be used successfully as a knowledge representation technique: Our
experiments show that the probability-based algorithm is able to solve a wide
variety of tactical chess problems. Furthermore, using both analytical examples
and experimental results, we show that the use of probability distributions is supe-
rior to the use of either of the previous techniques. Experimentally we show that
the probability-based algorithm solves over one-third more problems than the
comparable range-based algorithm and expands approximately one- tenth the
nodes on problems that both algorithms solve. We also show, again within the
domain of tactical chess problems, that the probability-based algorithm is better
than any alpha-beta program that searches to an average depth of six-ply or less.
The second issue addressed in this thesis is the development of a method that can
be used to generate range-based (and probability-based) knowledge represen-
tations. The inability to generate reasonable rangem has been a major obstacle to

4-20

MACHINE INTIUJGENCE

testing the B* algorithm. We present one method based on the use of a null-move
search that can be used for generating ranges (and distributions) within the domain
of chess

[Rosenbloom 811 Rosenbloom, Paul S.
A World-Championship-Level Othello Program.
Technical Report CMU-CS-81-137, Carnegie-Mellon University, Computer Science

Department,
August, 1981.

Othello is a recent addition to the collection of games that have been examined within
artificial intelligence. Advances have been rapid, yielding programs that have
reached the level of world-championship play. This article describes the current
champion Othello program, lago. The work described here includes: (1) a task
analysis of Othello; (2) the implementation of a program based on this analysis and
state-of-the-art Al game-playing techniques; and (3) an evaluation of the
program's performance through games played against other programs and com-
parisons with expert human play.

[Rosenbloom 82] Rosenbloom, P.S. and A. Newell.
Learning by Chunking: Summary of a Task and a Model.
In Proceedings of the AAAI-82 National Conference on Artificial Intelligence, Pages 255-257.

The American Association for Artificial Intelligence, August, 1982.
The power law of practice states that performance on a task improves as a power law

function of the number of times the task has been performed. In this article we
describe recent work on a model of this effect. The model, called the chunking
theory of learning, is based on the notion of chunking. A limited version of this
model has been implemented within the Xaps2 production system architecture.
When it is applied to a 1023-choice reaction-time task (encoded as a set of
productions), task performance is improved (measured in terms of the number of
production system cycles). Moreover, the practice curves are power law in form.

[Rosenbloom 83) Rosenbloom, P.S.
The Chunking of Goal Hierarchies (A Model of Practice and Stimulus-Response

Compatibility).
Technical Report CMU-CS-83-148, Carnegie-Mellon University, Computer Science

Department,
August, 1983.

In this thesis we present an integrated theory for two phenomena: practice and
stimulus-response compatibility. It is a theory that is both psychologically plausible
and useful as a learning mechanism for Al systems.

The work on practice is based on our earlier investigations that showed that: (1) when
human performance is measured in terms of the time required to do a task, it
improves as a power-law function of the number of times the task has been per-
formed: and (2) that a model of practice based on the concept of chunking was
capable of producing power-law practice curves.

The previous work established the feasibility of the chunking theory for a single task,
but the implementation was specific to that one task. In this thesis we develop a
modified formulation of the chunking theory that allows a more general im-
plementation. In this formulation, task algorithms are expressed in terms of
hierarchical goal structures. These algorithms are simulated within a goal-based
production-system architecture, designed for this purpose. It improves the perfor-

4-21

MACHINE INTELUGENCE

mance of the system by gradually reducing the need to decompose goals into their
subgoals.

This model has been successfully implemented and applied to the task employed in the
previous work, and to a set of variations on three stimulus-response compatibility
tasks. Compatibility is a topic for which there is still no metric theory. We provide
two formulations of such a theory. Both formulations of this model provide good
fits to the data from the three compatibility experiments.

[Rosenbloom 84] Rosenbloom, P.S., Laird, J.E., McDermott, J., Newell, A.,and E. Orciuch.
Ri-Soar: An Experiment in Knowledge-Intensive Programming in a Problem-Solving Ar-

chitecture.
Pattern Analysis and Machine Intelligence7:561-569, January, 1984.
Also available in CMU-CSD technical report CMU-CS-85-110, and the Proceedings ofthe

IEEE Workshop on Principles of Knowledge-Based Systems, IEEE Computer Society,
December 1984.
This paper presents an experiment in knowledge-intensive programming in Soar. In

Soar, knowledge is encoded within a set of problem spaces, yielding a system
capable of reasoning from first principles. Expertise consists of additional rules
that guide complex problem-space searches and substitute for expensive problem-
space operators. The resulting system uses both knowledge and search when
relevant. Expertise knowledge is acquired either by having it programmed, or by a
chunking mechanism that automatically learns new rules reflecting the results im-
plicit in the knowledge of the problem spaces. The approach is demonstrated on
the computer-system configuration task, the task performed by the expert system,
Ri.

[Rudnicky 82] Rudnicky, A.I., A.H. Waibel, and N. Krishnan.
Adding a Zero-Crossing Count to Spectral Information in Template-Based Speech

Recognition.
Technical Report CMU-CS-82-140, Carnegie-Mellon University, Computer Science

Departuet,
October, 1982.

Zero-crossing data can provide important feature information about an utterance which
is not available in a purely spectral representation. This report describes the incor-
poration of zero-crossing information into the spectral representation used in a
template-matching system (CICADA). An analysis of zero-crossing data for an ex-
tensive (2880 utterance, 8 talker) alpha-digit data base is described. On the basis of
this analysis, a zero-crossing algorithm is proposed. The algorithm was evaluated
using a confusable subset of the alpha-digit vocabulary (the 'E-set'). Inclusion of
zero-crossing information in the representation leads to a 10-13% reduction in
error rate, depending on the spectral representation.

[Stern 831 Stern, R.M. and MJ. Lasry.
Dynamic Speaker Adaptation for Isolated Letter Recognition Using MAP Estimation.
In In Proceedings of the IEEE International Conference on Acousticx Speech, and Signal

Processing, Pages 734-737. IEEE, April, 1983.
A dynamic speaker-adaptation algorithm for the CMU feature-based isolated letter

recognition system, FEATURE, is described. The algorithm, based on maximum a
posteriori probability estimation techniques, uses the labeled observations input
thus far to the classifier, as well as the a priori correlations of the features within
and across the various letters of sets of letters (classes). The probability density

4-22
I R IM ~

MACIINE INTFJJJGENCE

functions (pdo of all the classes are updated simultaneously rather than on a
class-by-class basis so that the pdf of a given class is updated before any obser-
vation from that class has been input. A significant improvement in the recognition
performance was observed for different vocabularies as the system tuned to the
characteristics of a new speaker. Finally, the algorithm was compared to simpler
forms of dynamic adaptation. It produced a faster decrease of the error rate than
the other tuning procedures. After a small number of iterations, however, the
various procedures yielded similar results.

[Touretzky 841 Touretzky, D.S.
The mathematics of inheritance systems.
PhD thesis, Carnegie-Mellon University, Computer Science Department, May, 1984.

[Waibel 811 Waibel, A. and B. Yegnanarayana.
Comparative Study of Nonlinear Time Warping Techniques in Isolated Word Speech Recog-

nition Systems.
Technical Report CMU-CS-81-125, Carnegie-Mellon University, Computer Science

Department
June, 1981.

In this paper we present the description of an isolated word recognition system and a
discussion of various design choices that affect its performance. In particular, we
report experimental results aimed at evaluating several methods to optimize the
performance of dynamic warping algorithms. Three major aspects that have been
suggested in the literature have been investigated: (1) relaxation of the boundary
conditions to allow for inaccurate begin-end time detection, (2) choice of warping
algorithm, e.g., Itakura asymmetric, Sakoe and Chiba symmetric, Sakoe and Chiba
asymmetric, and (3) choice of an appropriate warping window to restrict computa-
tion to a minimum needed for best recognition results. Recognition results were
tested on two vocabularies: the digits and a highly confusable subset of the al-
phabet (e.g., e,b,dp,tg,v,c,z). (1) The relaxation of the boundary conditions
degraded the performance of the confusable subset and the digits. (2) The asym-
metric Itakura algorithm yielded better results for the confusables, while we ob-
tained slightly better results for the digits using the symmetric Sakoe and Chiba
algorithm. (3) The choice of a 100-ms warping window appears to be optimal for

both vocabularies used.

[Waibel 821 Waibel, A.
Towards Very Large Vocabulary Word Recognition.

Technical Report CMU-CS-82-144, Carnegie-Mellon University, Computer Science
Department,

November, 1982.
In this paper, preliminary considerations and some experimental results are presented

in an effort to design Very Large Vocabulary Recognition (VLVR) systems. We
will first consider the applicability of current recognition techniques and argue
their inadequacy for VLVR. Possible alternate strategies will be explored and their
potential usefulness statistically evaluated. Our results indicate that suprasegmen-
tal cues such as syllabification, stress patterns, rhythmic patterns and the voiced-
unvoiced patterns in the syllables of a word provide powerful mechanisms for
search space reduction. Suprasegmental features could thus operate in a com-
plementary fashion to segmental features.

4-23

RESEARCH IN PROGRAMMING TECIINOLOGY

5. Research in Programming Technology

Programming Technology concerns all aspects of constructing high-quality hardware/software systems. By

"high-quality", we mean systems that are: demonstrably correct, resource-efficient, produced on time and

within budget, and easily maintained and enhanced. Moreover, such systems must provide a flexible environ-

ment for diverse users. Research in programming technology addresses the principles, knowledge, and tools

(compilers, debuggers, editors, design systems, etc.) used to produce software systems. At CMU, in particular,

our goal is to enhance the ability to produce predictably high-quality hardware/software systems. We

measure progress toward that goal either in terms of increased quality of particular systems (e.g. compilers) or

greater complexity in tasks we can produce at a given quality.

Through our research we have developed techniques, languages, and methodologies that improve program-

ming productivity and produce high-quality systems. The three key areas we focussed on were:
" Automated compiler construction

" Highly secure and reliable systems
" Advanced programming environments

5.1. Automating Compiler Construction

Productivity increases when programmers can work in high-level languages that effectively capture human

reasoning. The compilers and interpreter that translate such languages into hardware-specific machine code

represent some of our most important programming tools. Though we have been writing them for almost

three decades, they remain large and complex. Writing a compiler by hand, even with all our experience,

typically requires ten to twelve man years. Exacerbating the problem is the fact that each unique combination

of language, operating system, peripheral equipment, hardware, etc. can require a new compiler. Our

research has shown how to automate the job by using generic compiler-generating systems. Current tech-

niques reduce the creative effort to approximately one man-year and promise significant improvements in

developing more general programming systems. Automating compiler construction has three major aspects,

discussed in the following sections:
* Analyzing the target language
* Developing effective "generating-system" techniques
* Discovering code-optimizing compiler techniques

5.1.1. Analyzing the target language

Commercial firms are currently testing compiler-generator systems for traditional Algol-like languages (e.g.

C, Pascal, Modula-2). Meanwhile, CMU researchers are experimenting ind refining systems for , an ad-

vanced Algol-like language. Our strategy is to understand the challenge of writing Ada compilers by examin-

5-1

I-1 M I 111

RESEARCH IN PROGRAMMING TECHNOLOGY

ing the language's strengths and weaknesses and experimenting with compiler techniques that support the

specific features of Ada not found in other imperative languages such as C or Pascal.

We have evaluated Ada and compared it with other programming languages such as Pascal [Habermann
81a, Hibbard 83, Shaw 81, Shaw 84a.. Our work has demonstrated the fundamental use of data abstraction in

Ada has revealed Ada's flexibility and expressive richness [Perls 81, Shaw 82]. While rich at the source level.
Ada also permits efficient machine code. and a smart compiler can "compile out" the complexity to achieve

efficiency comparable to what Pascal and C compilers produce. Designing such clever Ada compilers has

turned out to be far more difficult than we anticipated in 1981.

CMU researchers have developed runtime support techniques and various code generation and optimiza-
tion methods especially for Ada [Bentley 81a]. We designed intermediate representations of Ada programs in
IDL (Interface Description Language) [Nestor 81] and Diana, which has become an international standard
[Goos 811. These representations describe the data used to communicate among collections of related

programs, such as the set of tools in a programming environment [Garlan 84, Barbacci 82a]. Current com-
pilers can generate code correctly with acceptable efficiency. We expect optimizing Ada compilers to reach

the market by the end of the decade.

5.1.2. Creating "generating-systems" techniques

A compiler consists typically of three parts. The front end checks the syntax and semantics of the input

program; the intermediate processor transforms the control flow output of the front end into pseudo machine
code; the back end transforms the pseudocode into genuine machine code. The technique of creating systems

that generate software products can be applied to the various stages of a compiler and to the production of

software systems in general. We asked the following questions:
" Which part of the production process can be automated?
* How should we integrate generated parts with existing code?
" How can we insert special system requirements?
" How should the system represent and process target system descriptions?

Generators have been produced for the front end of compilers, particularly for handling syntax. Creating
generators for the back end is challenging because no description formalism exists as for front end (BNF), and
quality code generators require sophisticated code optimization specific to the target system.

Our main achievement in this area is the design and implementation of a Back End Compiler Generator
System: PQCC (Production Quality Compiler Compiler). PQCC is a sophisticated system that produces

efficient code generators for various machine architectures. PQCC requires three types of input:
* an IDL description in intermediate code

5-2

RESEARCH IN PROGRAMMING TECHNOLOGY

" an ISPS description of the underlying hardware
* a macro library of hardware-specific code optimizations

PQCC has mastered Modula-2, the intermediate step from Pascal to Ada. The system has been perfected to

the point where PQCC is superior to commercial products for Pascal and C, and can handle machines of the

DEC and IBM variety.

5.1.3. Finding code optimizing compiling techniques

The final aspect of a Compiler Generator that we investigated was compiling techniques with code op-

timization. As mentioned earlier, quality code generators require sophisticated code optimization. To achieve

the required level of code optimization, we considered the representation of the intermediate code, the input

describing the machine hardware, and known optimization techniques. CMU produced two demonstration

systems of Ada environments. The main focus of the Gandalf project, the first system, is automation and

generic programs(see Section 5.3) in generating an Ada environment [Habermann 81b]. The Gandalf-

generated Ada environment's knowledge of Ada syntax and semantics prevents the user from making syntac-

tic and semantic errors. An Ada program generated by Gandalf is guaranteed to be free of syntax errors and

static semantic violations.

CMU's second demonstration system of an Ada environment, the Ada+ project, focussed on integrating an

Ada compiler with an operating system and extending the operating system with Ada tools. The project has

produced an Ada compiler on the Spice-Accent operating system, concentrating on version control tools and

automatic recompilation [Habermann 81b]. As a side effect of this project, we have gathered useful infor-

mation on peculiarities of Ada code generation.

5.2. Highly Secure and Reliable Systems

In a secure, reliable system, the key programs must be absolutely correct and circumventing them at

runtime should be extremely difficult. The requirement for absolute correctness puts a tremendous burden

on system designers to show that their design is secure and on implementors to demonstrate that their product

accurately reflects the design. Achieving runtime reliability demands that designers compensate for inevitable

hardware failures. Our key strategies for meeting the dual challenge of security and reliability are redundancy

and verification.

Redundancy permits reliability checks and protects against hardware failures but has been unpopular in

uniprocessor machines because it adds execution time overhead. However, multiprocessing systems, dis-

tributed systems, and computer networks, through their parallelism and concurrency, now offer promising

5-3

RESEARCI IN PROGRAMMING TECHNOLOGY

solutions to the time problem. Decreasing hardware costs, of both processors and memory, make it increas-

ingly feasible to trade processing cycles for redundant hardware.

The programming technology community has mastered verification for sequential programs in standard

programming languages, but large systems and parallel or concurrent computations pose additional problems.

Techniques suitable for sequential programs fail to capture concurrency concepts such as temporal event

ordering. Fortunately, research on verification thrives in computational models abstracted from real system
designs. One can, for example, investigate how to synchronize or schedule events in distinct processes

without considering the specific tasks these processes carry ouL

Our research has stressed relevance to working systems. We have pursued three parallel paths that combine

reliability and verification goals within real multiprocessor environments:
" Verification concepts, techniques, and applications on parallel architectures
" Design and implementation of parallel architectures and their software
* Fault tolerance and reliability support in paiallel systems.

5.2.1. Design and implementation of parallel architectures and software

Research in parallel architectures for security and reliability has led to the design and implementation of

both hardware and software for tightly coupled multiprocessors, loosely coupled multiprocessors, and systems

distributed on computer networks.

CMU's multiprocessor research spans the past 15 years. Our design and implementatio' of tightly coupled

multiprocessors goes back to the C.mmp machine which consisted of sixteen processors having access to any

one of sixteen 256K memory units on an instruction by instruction basis. We built a loosely coupled

multiprocessor, Cm*, out of variable clusters of processors and memories connected through computer nodes
responsible for translating remote program and data calls(Kmaps). This architecture is particularly suited for

increasing reliability through redundancy [Harbison 82a]. The Kmap translation step facilitates the im-

plementation of security because it includes both address translation and authorization checks. Applications

on this architecture show great promise for speeding up execution time.

Over the past five years, CMU has gained extensive experience in networking and using distributed systems

on networks. Reliability can be greatly enhanced by replication and redundancy. This has been

demonstrated in the Distributed Sensor Net project (see Chapter 6) of which the Spice project is an offspring

[Harbison 82b]. A particular issue of protection arises if simultaneous access to resources is a potential threat

to consistency of the network state. Our work has shown the general applicability of the concept of "atomic

transactions" and how these can be implemented on local area networks for a variety of tasks.

4

RESEARCH IN PROGRAMMING TECHNOLOGY

5.2.2. Verification concepts, techniques, and applications on parallel
architectures

Testing serves as an engineering aid to observe behavior and fine tune systems. While testing can show the

presence of flaws or errors, but not their absence, verification assures the absolute correctness of an im-

plementation.

One of the mosi productive techniques for sequential programs is Hoare's axiomatic approach. This ap-

proach translates each language construct into a statement in elementary logic: "A and B", "A implies B", or
"not A." Extending this to concurrent computations, "temporal logic" allows statements involving time, such

as "at some time in the future" or "will be true forever" [Clarke 83a]. We designed and implemented a

temporal logic verification system. It can handle parallel designs that can be translated into a finite state

transition diagram. Network protocols and process communication on parallel architectures satisfy this con-

dition. The only systems excluded from this verification method are those that can add or generate resources

dynamically [Clarke 82a, Clarke 83b]. A particular achievement has been the use of the verification system for

proving the correctness of some VLSI chip designs. These designs are typically described by a diagram of

more than 1000 states. In several cases, this verification system found subtle design flaws that had escaped the

most careful scrutiny of its designers and testers [Clarke 83c]. Researchers are extending these verification

techniques to apply to transactions in concurrent computations ISpector 83].

5.2.3. Specific design of fault tolerance and reliability support in parallel

systems

Although hardware failure is inevitable, it can be counteracted by building fault-tolerant systems that make

heavy use of redundancy and replication. Our research has resulted in the design and analysis of a variety of

reconfiguration strategies under the assumption that parts of a system malfunction [Clarke 82b, Harbison

82b]. An important experimental system under construction for increasing reliability is TABS, Transaction-

Based Distributed Systems. TABS achieves reliability mainly through atomic transactions that guarantee

either complete failure of a response to a request or complete success. The network will never get into an

intermediate state in which a modification has partially succeeded, but failed somewhere in the middle

[Spector 83].

Reliability requirements are not uniform for different applications and/or architectures. Therefore, it is

necessary to provide user facilities to express the degree of reliability required in their programming language

[Durham 82]. We demonstrated the usefulness of the parallel approach to redundancy with performance

studies of various architectures [Nestor 81].

RISFARCII IN PROGRAMMING ECiI1NOLOGY

5.3. Advanced Programming Environments

Programming environment research is developing systems that will support both programming-in-the-large

(assembling program modules into complete software systems) and programming-in-the-small (writing the

individual component programs). Such environments are crucial for resolving the serious inability to produce

and maintain large, reliable software systems. In the past, tools (e.g. editors, compilers, etc.) have been

designed and implemented to support particular aspects of the system design process. Despite their valuable

contributions, these tools suffer two serious drawbacks: typically designed in isolation, each having its own

idiosyncratic interface, they show little regard for other tools; they are handcrafted and are therefore difficult

to modify or adapt.

Ultimately, we want to build programming environments that serve as intelligent assistants and not merely

as tool kits. Thus our goal is to provide a collection of integrated, interactive tools that users can easily modify

or extend to meet changing needs at both system and module levels. To reach that goal by the end of this

decade, our work explores the merging of programming environment research from the last five years with

advances in knowledge-based, expert systems.

5.3.1. Designing a programming environment

Our target programming environment is one that supports system developers by:
" Assisting in writing individual programs
" Maintaining system version control
" Coordinating project management
" Providing a uniform user interface
" Integrating tools through a common database

To develop this intelligent environment, we coordinated common facilities, language syntax and semantics,

and developer expertise. We identified and implemented facilities common to a class of programming

environments (e.g. memory and management of input/output and windows). Researchers integrated the
various tools by developing a common database that provides support for meeting syntax and semantics

requirements, and then incorporated expert techniques for using the database. In order to implement our

generation scheme, we had to integrate the implemented parts with an existing operating system. We chose

UNIX to achieve portability. We also devised descriptive tools to allow designers to define the specific facilities

of a programming environment.

54

RFEARCH IN PROGRAMMING TECINOLOGY

5.3.2. Automatically generating environments

To most easily obtain extensible and modifiable tools, we concentrated on techniques that can generate

programming enviroments automatically. Our basic strategy exploits ideas from automated compiler con-

struction. Figure 5-1 depicts the scheme for generating a programming environment.

Application-specific
Environment description facilities

Generator programs Common facilities

User's programming
environment

Figure 5-1: Generating a programming environment

Our ability to design and implement the Gandalf system demonstrates significant progress in advanced

programming environments. The Gandalf System is a support environment for both the programming en-

vironment designer and the tool builder. In addition to our work with Gandalf, we emphasized providing

supporting environments for the common facilities design [Ball 81, Ball 82]. We designed common facilities

for memory management, database management, and for the user interface, particularly for workstations and

terminals.

The Gandalf system runs on UNIx and provides specific support for describing the syntax and semantics of

specific tools [Habermann 81b, Habermann 81c]. The most recent additions to the system are facilities for

describing runtime support in programming environments [Leverett 82, Garlan 84]. Gandalf implements

runtime support in programming environments through "active database" concepts borrowed from Al. Ob-

ject contain not only passive data, but also active programs (daemons) that function as watchdogs. The

daemon facility is general enough to implement runtime semantic checking and various management func-

tions, including access authentication and project management [Garlan 84, Habermann 81c]. Gandalf has

been used for creating several programming environments for a variety of purposes. Two environments

5-7

RESEARCH IN PROGRAMMING TECHINOLOGY

deserve particular mention:
" The Gandalf C prototype

* The Gnome System

The Gandalf C prototype integrates programming-in-the-small with programming-in-the-large by provid-

ing a uniform user interface that defines all interactions in terms of editing operations. The compiler and

debugger are integrated into the environment and incremental compilation is automatically performed when

possible. Debugging takes the form of editing a running program [Habermann 81b]. Programming-in-the-

large focuses on system configuration control. The user can define modular interfaces, versions and system

configurations that group these versions into executable systems [Goos 81, Habermann 82a, Habermann 82b].

The purpose of the Gnome System is to support novice programmers learning to program in Pascal. The

system provides incremental compilation and has complete knowledge of Pascal's syntax and semantics.

Gnome is an interactive system (as all Gandalf products are) that constructs the programs in response to user

commands. Since all programs are written by the system, syntax and semantics errors cannot arise. The

system provides all the advantages to its users of interacting with an intelligent assistant who knows the rules

perfectly. This allows the user to concentrate on substance rather than on form. The Gnome System is a high

quality product that has gone through several design and implementation iterations [Feiler 82].

5-

RESEARCH IN PROGRAMMING TECHNOLOGY

5.4. Bibliography

[Ambriola 841 Ambriola, V., R.J. Ellison and G. Kaiser.
A..i Action Routine Model for ALOE.
Technical Report CMU-CS-84-156, Carncgie Mellon University Computer Science Depart-

ment,
August. 1984.

We propose a new model for the design and implementation of structure editing en-
vironments for programming-in-the-small. Unlike previously proposed models,
our model is an attempt at a complete solution that encompasses syntax, static
semantics, and dynamic semantics. The essence of the model is that the pure
syntax-directed editor is viewed as an abstract machine for the particular language.
The semantics of the corresponding editing environment are implemented in terms
of the tree-oriented machine language defined by the abstract machine. The
semantics may be written using these primitives directly, in a higher-level tree-
oriented programming language, or in a very high-level declarative notation that
can be translated into one of the two types of executable language. In this docu-
ment, we present the model itself and introduce a tree-oriented programming
language for writing semantics in the framework of this model. To make the
discussion more concrete, we explain the model in the context of the ALOE editor
generator.

[Atlas 83] Atlas, B.and Z. Segall.
Behavioral Analysis of an ISPS Oriented Architecture.
Computer Languages and Their Applications, May, 1983.

[Ball 81] Ball, J.
Canvas: The Graphics Package for the Spice Personal Timesharing System.
In Proceedings of Computer Graphics 81, October, 1981.

[Ball 821 Ball, J.E. and PJ. Hayes.
A Test-bed for User Interface Designs.
In Proceedings of the Conference on Human Factors in Computer Systems, March, 1982.

There is currently much well founded concern with interactive computer interfaces
from the human factors point of view. Typically, interactive command interfaces
appear to their users as unfriendly, uncooperative, and inflexible inhibitors of
access to the underlying tool systems, rather than the facilitators they should be.

Over the past few years, we have been working towards the construction of improved
user interfaces. In particular, we have been interested in interactive command
interfaces that appear to their users much more friendly and cooperative than
those presently available. During the course of our work, we have identified
several features, not typically found in current interfaces, that we believe essential
for cooperative interface behavior. These features include: resistance to trivial
errors, ready availability of appropriate help text, continuity mechanism, per-
sonalization, and consistency across subsystem boundaries.

An attractive approach to measuring the effectiveness of some of these more advanced
interface features, and thus either justifying them or showing them to be ineffec-
five or not worth their price, is to build a test-bed interface in which the features
can be implemented and evaluated through use. We are currently engaged in the
construction of such a test-bed interface. We list a set of design goals or principles
that we have followed: maximum separation between tools and interface, ef-

4 &

RESEARCH IN PROGRAMMING TECHNOLOGY

ficiency, built-in instrumentation, and operation on widely available hardware.

[Barbacci 82a] Barbacci, M.R.
Intermediate Representation for the Spice Ada+ Compiler.
Spice Report 138, Carnegie Mellon University Computer Science Department,
September, 1982.

[Barbacci 82b] Barbacci, M.R.
The Ada+ Programming Environment.
Spice Report 139, Carnegie Mellon University Computer Science Department,
September, 1982.

[Bentley 81a] Bentley, J.L
Writing Efficient Code.
Technical Report CMU-CS-81-116, Carnegie Mellon University Computer Science Depart-

merit,
April, 1981.

The most important step in making software systems efficient is the proper selection of
data structure and algorithms; many papers and textbooks have been devoted to
these topics. Most discussions, however, neglect another important activity: that of
writing machine independent efficient code. This paper examines a set of tech-
niques for accomplishing that step. We will examine those techniques both in an
abstract setting and in their application to a real program, where they led to a
speedup of a factor of over six. Because these techniques should be employed
rarely, an important part of this paper is describing exactly when one should (and
should not!) use them.

[Bentley 81b] Bentley, J. L., D. F. Stanat, and J. M. Steele.
Analysis of a Randomized Data Structure for Representing Ordered Sets.
In Proceedings of the Nineteenth Annual Allerton Conference on Communication, ControL

and Computing, October, 1981.

[Bentley 81c] Bentley, J. L. and T. Ottmann.
The Complexity of Manipulating Hierarchically Defined Sets of Rectangles.
In Proceedings of the Tenth International Symposium on the Mathematical Foundations of

Computer Science, August, 1981.

[Bentley 81d) Bentley, J. L
Squeezing Constant Factors of Geometric Algorithms.
In Proceedings of the Nineteenth Annual Allerton Conference on Communication, ControL

and Computing, October, 1981.

[Bentley 821 Bentley, J. L
Writing Efficient Program.
Prentice-Hall, 1982.

[Bentley 83a] Bentley, L.L
A Case Study in Writing Efficient Programs.
Technical Report CMU-CS-83-108, Carnegie Mellon University Computer Science Depart-

ment
January, 1983.

The time and space performances of a computer program rarely matter, but when they

5-10

RESEARCH IN PROGRAMMING TECHNOLOGY

do they can be of crucial importance to the success of the overall system. This
paper discusses the performance issues that are aroused in the implementation of a
small system (twelve programs, two thousand lines of code) for a small business.
The paper emphasizes a general methodology for improving system performance;
the details of the case study show how the general techniques are applied in a
particular context.

[Bentley 83b] Bentley, J.L and C.C. McGoech.
Worst-Case Analyses of Self-Organizing Sequential Search Heuristics.
Technical Report CMU-CS-83-121, Carnegie Mellon University Computer Science Depart-

ment,
March. 1983.

The performance of sequential search can be enhanced by the use of heuristics that
move elements closer to the front of the list as they are found. Previous analyses
have characterized the performance of such heuristics probabilistically. In this
paper we show that the heuristics can also be analyzed in the worst-case sense, and
that the relative merit of the heuristics under this analysis is different than in the
probabilistic analyses. Simulations show that the relative merit of the heuristics on
real data is closer to that of the new worst-case analyses rather than that of the
previous probabilistic analyses.

[Brookes 83a] Brookes, S.D., and W.C. Rounds.
Behavioral Equivalence Relations Induced by Programming Logics.
Technical Report CMU-CS-83-112, Carnegie Mellon University Computer Science Depart-

ment,
March, 1983.

In this paper we compare the descriptive power of three programming logics by study-
ing the elementary equivalence relations which the logics induce on nondeter-
ministic state-transition systems. In addition, we compare these relations with other
natural state-equivalence relations for nondeterministic systems. We find that the
notions of bisimilarity and observation equivalence are very stronrg equivalences
compared with those induced by logics. These three comprise regular trace logic
(RTL), propositional dynamic logic (PDL). and Hennessy-Milner logic (HML).
Regular trace logic is a new logic which can be used to give behavioral specifica-
tions for concurrent systems. It is a way of formalizing those properties of
programs which have been given informally in terms of path expressions. The
model theory and axiomatics of this logic are interesting in their own right.
Propositional dynamic logic is well-known: our treatment differs from the stan-
dard one only in that we regard the modalities as specifying intended behavior
instead of being programs. Hennessy-Milner logic is a simplified modal logic
which those authors used as a characterization of their notion of observation equiv-
alence, which we call weak observation equivalence in this paper. We also include
a brief treatment in this context of two other natural equivalences for nondeter-
minisdic systems: failure equivalence and trace equivalence, both of which are
weaker than the relations induced by the logics but can be characterized using
appropriate logical subsets.

[Brookes 83b] Brookes, S.D.
On the Relationship of CSS and CSP.
In Proceedings of ICALP-83, Springer- Verlag Publishers, July, 1983.

This paper compares two models of concurrency, Milner's Calculus of Communicating

5-1

RESEARCH IN PROGRAMMING ITC30NOLOGY

Systems (CCS) and the failures model of Communicating Sequential Processes
(CSP) developed by Hoare, Brookes and Roscoe. By adapting Milner's
synchronization trees to serve as notation for both CCS and CSP. we are able to
define a representation mapping for CSP processes. We define an equivalence
relation on synchronization trees which corresponds precisely to the notion of
failure equivalence This equivalence relation identifies two trees if and only if the
processes represented by the trees have identical failure sets.

[Brookes 83c] Brookes, S.D.
A Semantics and Proof System for Communicating Processes.
In Proceedings of the 1983 Workshop on Logic of Programs Springer- Verlag, June, 1983.

[Brookes 84] Brookes, S.D., C.A.R. Hoare, and A.W. Roscoe.
A Theory of Communicating Sequential Processes.
Journal of the ACM, July, 1984.

[Bruegge 841 Bruegge, B. and P.G. Hibbard.
Generalized Path Expressions: A High-Level Debugging Mechanism.
Journal of Systems and Software3:265-276, 1984.

[Chazelle 82a] Chazelle, B.
The Bottom-Left Bin-Packing Heuristic: An Efficient Implementation.
Technical Report CMU-CS-82-104a, Carnegie Mellon University Computer Science

Department,
May, 1982.

[Chazelle 82b] Chazelle, B.
An Improved Algorithm for the Fixed-Radius Neighbor Problem.
Technical Report CMU-CS-82-109, Carnegie Mellon University Computer Science Depart-

ment,
May, 1982.

[Chazelle 82c] Chazelle, B.
The Polygon Containment Problem.
Technical Report CMU-CS-82-106, Carnegie Mellon University Computer Science Depart-

ment,
May, 1982.

[Clarke 82a] Clarke, E.M., A.P. Sistla, N. Francez, and Y. Gurevich.
Can Message Buffers be Characterized in Linear Temporal Logic?
In Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of Distributed

Computing, August, 1982.
Also appears in Information and Control, Vol. 63 (1/2), Oct/Nov., 1984. See Sistla 84 for

abstract.

[Clarke 82b] Clarke, E.M. and C.N. Nikolaou.
Distributed Reconfiguration Strategies for Fault Tolerant Multiprocessor Systems.
IEEE Transactions on Computers C-31:771-782, August, 1982.

In this paper, we investigate strategies for dynamically reconfiguring shared memory
multiprocessor systems that are subject to common memory faults and unpre-
dictable processor deaths. These strategies aim at determining a communication
page, i.e. a page of common memory that can be used by a group of processors ftr

5-12

RESEARCH IN PROGRAMMING TECHNOLOGY

storing crucial common resources such as global locks for synchronization and
global data structures for voting algorithms. To ensure system reliability, the
reconfiguration strategies must be distributed so that each processor independently
arrives at exactly the same choice. This type of reconfiguration strategy is currently
used in the STAGE operating system on the PLURIBUS multiprocessor. We
analyze the weak points of the PLURIBUS algorithm and examine alternative
strategies satisfying optimization criteria such as maximization of the number of
processors and the number of common memory pages in the reconfigured system.
We also present a general distributed algorithm which enables the processors in
such a system to exchange the local information that is needed to reach a consensus
on system reconfiguration.

[Clarke 83a] Clarke, E.M. Jr., S.M. German, and J.Y. Halpern.
On Effective Axiomatizations of Hoare Logics.
Journal of the ACM 3030(3):612-636, July, 1983.

For a wide class of programming languages P and expressive interpretations I, it is
shown that there exist sound and relatively complete Hoare logics for both partial-
correctness and termination assertions. In fact, under mild assumptions on P and I
it is shown that the assertions true in I are uniformly decidable in the theory of
I(Th(I)) iff the "halting problem for P is decidable for finite interpretations.
Moreover the set of true termination assertions is uniformly recursively
enumerable in Th(1) even if the halting problem for P is not decidable for finite
interpretations. Since total- correctness assertions coincide with termination asser-
tions for deterministic programming languages, this last result unexpectedly sug-
gests that good axiom systems for total correctness may exist for a wider spectrum
of languages than is the case for partial correctness.

[Clarke 83b] Clarke, E.M., C.N. Nikolaou, N. Francez, and S. Schuman.
A Methodology for Verifying Request Processing Protocols.
In Proceedings of the ACM SIGCOM 83 Symposium on Communications, Architecture, and

Protocols, Pages 76-83. ACM SIGCOM, March, 1983.
In this paper, we view computer networks as distributed systems that provide their

users with a set of services, in a way which hides the distinction between those
services which are local and those which are remote. We conceive of a given target
network configuration as a network of communicating virtual machines and its
behavior is modelled by a system of communicating sequential processes. Network
protocols are described by a high level concurrent language (CSP) and a methodol-
ogy is developed which permits the verification of partial and total correctness
assertions about the system in a simple and natural way. Global invariants are used
to establish invariant properties of the whole system and histories to record the
sequence of communication exchanges between every matching pair of processes.
Eventually properties are expressed using linear temporal logic.

[Clarke 83c] Clarke, E.M., E.A. Emerson, and A.P. Sistla.
Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic

Specifications.
In Proceedings of the Tenth ACM Symposium on Principles of Programming Languages

January, 1983.
We give an efficient procedure for verifying that a finite state concurrent system meets

a specification expressed in a (propositional) branching time temporal logic. Our
algorithm can be modified to handle fairness. We argue that this technique can

5-13

RESEARCH IN PROGRAMMING TECHNOLOGY

provide a practical alternative to manual proof construction or use of a mechanical
theorem prover for verifying many finite state concurrent systems.

[Clarke 83d] Clarke, E. M. Jr. and B. Mishra.
Automatic and Hierarchical Verification of Asynchronous Circuits Using Temporal Logic.
Technical Report CMU-CS-83-155, Carnegie Mellon University Computer Science Depart-

ment,
1983.

[Clarke 83e] Clarke, E.M. Jr., E.A. Emerson.
Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons.
Science of Computing(2), July, 1983.

(Clarke 84a] Clarke, E.M. Jr. and B. Mishra.
Automatic Verification of Asynchronous Circuits,
Lecture Notes in Computer Science. Springer-Verlag Publishers, 1984.

[Clarke 84b] Clarke, E.M. Jr.
The Characterization Problem for Hoare Logics.
Technical Report CMU-CS-84-109, Carnegie Mellon University Computer Science Depart-

ment.
1984.

Research by this author and by others has shown that there are natural programming
language control structures which are impossible to describe adequately by means
of Hoare axioms. Specifically, we have shown that there are control structures for
which it is impossible to obtain axiom systems that are sound and relatively com-
plete in the sense of Cook. These constructs include procedures with procedure
parameters under standard Algol 60 scope rules and coroutines in a language using
recursive procedures without parameters.

[Clarke 84c] Clarke, E.M. Jr. and A.P. Sistla.
The Complexity of Propositional linear Temporal Logic.
Journal of the ACM, 1984.

[Clarke 84d] Clarke, E.M. Jr. and D. Kozen (eds.).
Lecture Notes in Computer Science. Volume 164: Proceedings of the 1983 Workshop on

Logics of Programs.
Springer-Verlag Publishers, 1984.

[Clarke 84e] Clarke, E.M. Jr., S.M. German and J.Y. Halpern.
Reasoning about Procedures as Parameters,
Lecture Notes in Computer Science. Springer-Verlag Publishers, 1984.

(Daniels 83] Daniels, D. and A. Spector.
An Algorithm for Replicated Directories.
Technical Report CMU-CS-83-123, Carnegie Mellon University Computer Science Depart-

ment,
May, 1983.

This paper describes a replication algorithm for directory objects based upon Gifford's
weighted voting for files. The algorithm associated a version number with each
possible key on every replica and thereby resolves an ambiguity that arises when
directory entries are not stored in every replica. The range of keys associated with

5-14

RESEARCH IN PROGRAMMING TECHNOLOGY

a version number changes dynamically; but in all instances, a separate version
number is associated with each entry stored on every replica. The algorithm
exhibits favorable availability and concurrency properties. There is no perfor-
mance penalty for associating a version number with every possible key except on
Delete operations, and simulation results show this overhead is small.

[Durham 82] Durham, I. and M. Shaw.
Specifying Reliability as a Software Attribute.
Technical Report CMU-CS-82-148, Carnegie Mellon University Computer Science Depart-

ment,
December, 1982.

This paper examines some issues in specifying reliability as a software attribute. A
scheme for characterizing software reliability, known as a failure profile, is intro-
duced. Failure profiles are derived for particular implementations of an abstrac-
tion by identifying analytically the behavior of the module when software or
hardware faults occur. A failure profile is developed for a sorting program to
demonstrate an informal techniques for identifying the consequence of faults. The
derived failure profile is compared with observations of the program's behavior in
the presence of artificially induced faults to demonstrate the effectiveness of the
failure profile characterization of software reliability. The issues raised in the
application of the informal technique are discussed with respect to developing a
formal and more mechanical technique for producing and using failure profiles.

[Ellison 84] Ellison, R. J.
The Gandalf Implementation: An Interim Report.
Systems and Software, 1984.

WFeiler 82] FeilerP.H.
A Language-Oriented Interactive Programming Environment Based on Compilation

Technology.
PhD thesis, Carnegie Mellon University, May, 1982.
Also published as CMU-CSD Technical Reports CMU-CS-82-117.

[Fortune 83] Fortune, S., D. Leivant, and M. O'Donnell.
The Expressiveness of First and Second Order Type Theories.
Journal of the ACM 30:151-185, 1983.

[Garlan 84] Garlan, D.B. and P.L. Miller.
GNOME: An Introductory Programming Environment Based on a Family of Structure

Editors.
In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, Pages 65-72. April, 1984.
The Gnome project represents an effort to use the concept of syntax-directed editing in

an educational arena. Using a family of editors generated from Medina-Mora's
ALOE system yields the added advantage of providing uniform interfaces to each
environment used by Gnome students.

[Goos 81] Goos, G. and W.A. Wulf.
Diana Reference Manual.
Technical Report CMU-CS-81-101, Carnegie Mellon University Computer Science Depart-

ment,
March, 1981.

5-is

RES13ARCH IN PROGRAMMING TECHNOLOGY

This document is an introduction to, and reference manual for, Diana, a Dcscriptive
Intermediate Attributed Notation for Ada. Diana is an intermediate form of Ada
programs. It is especially suitable for communication between the Front and Back
Ends of an Ada compiler, but is also suitable for use with other tools in an Ada
programming environment. Diana resulted from a merger of the set properties of
two earlier similar intermediate forms: TCOL and AIDA.

[Habermann glaJHabermann, A.N. and D. Notkin.
The Gandalf Software Development Environment.
In Proceedings of the Sixth International Conference on Software Engineering, December,

1981.
Also available in Proceedings of the Second International Symposium Project on Computa-

lion and Information, September 1983.
An overview of the goals, issues, and approaches of Gandalf are given. The focus of

Gandalf on project management, version control, and incremental programming is
shown (with less emphasis given to incremental programming since it is described
in more detail elsewhere). Also, the motivation for and mechanisms surrounding
the environment generation process are stressed. This is more extensive and more
current than the overview in the Research Review.

[Habermann 81b]
Habermann, A. N. and D.E. Perry.
System Composition and Version Control for Ada.
In H. Hunke, Editor, Software Engineering Environment, Pages 331-343. Gesellschaft fur

Mathematik und Datenverarbeitung, 1981.
A major part of an integrated programming and system development environment such

as Gandaf is that which is concerned with describing systems and controlling
versions of those systems. This paper presents the System Version Control En-
vironment (SVCE), discusses motivations that led to its current state, describes a
language to depict systems and versions, delineates desirable properties of system
component and version descriptions, and illustrates the interaction between SVCE
and its users.

[Habermann 81c]Habermann, A. N. and D. Notkin.
An Environment for System Version Control.
In Proceedings of the Sixth International Software Conference on Software Engineering,

December, 1981.
Also available in Proceedings of the National Computer Conference, Jan., 1982. See Haber-

mann 82 for abstract.

[Habermann 82a]Habermann, A.N. and G. Kaiser.
An Environment for System Version Control.
In Proceedings of the National Computer Conference, January, 1982.
Also available in Proceedings of the Sixth International Software Conference on Software

Engineering, Dec. 1981.
This document describes the design of SVCE, an interactive System Version Control

Environment. SVCE supports a system description language that describes system
and module interfaces and dependencies, a version maintenance facility that
handles both parallel and successive versions of modules and systems, and a system
generation facility that automatically generates an executable system given the
system description. SVCE is a component of Gandalf, an integrated software

5-16

RESEARCH IN PROGRAMMING TECHNOLOGY

development and maintenance environment.

[Habermann 82b]
Habermann, A. N.
Software Development Environment Issues as Related to Ada,
In T. Wasserman, Software Development Environments., 1982.

[Habermann 82c]Habermann, A. N.
System Development Environments,
Tools and Notions for Program Construction 11. Cambridge University Press, 1982.

[Habermann 831 Habermann, A.N. and D. Perry.
Ada for Experienced Programmers.
Addison Wesley Publishing, 1983.

[Harbison 82a] Harbison, S.P.
The Structure and Communication of Spice Objects.
Spice Project, Carnegie Mellon University Computer Science Department,
April, 1982.

[Harbison 82b] Harbison, S.P.
An Architectural Alternative to Optimizing Compilers.
In Proceedings of the Symposium on Architectural Support for Programming Languages and

Operating Systems, Pages 57-65. March, 1982.
Programming languages are designed to make programming productive. Computer

architectures are designed to make program execution efficient. Although architec-
tures should be designed with programming languages in mind, it may be as in-
appropriate to make the computer execute the programming language directly as it
is to make the programmer use machine language. It is the compiler's job to match
the programming language and the computer architecture, and therefore making
compilers efficient and easy to write are important design goals of a complete
hardware/software system. This paper summarizes research completed in 1980 on
a computer architecture, TM, that takes over some of the more burdensome tasks
of optimizing compilers for high-level-languages (HLL's), performing these tasks
dynamically during the execution of the object program. This is a different ap-
proach to making compilers efficient than is commonly taken; more common
approaches include devising more efficient optimization algorithms, being clever
about when to do optimizations, and building the compilers semi-automatically.

[Hibbard 83] Hibbard, P.G., A. Hisgen, J. Rosenberg, and M. Sherman.
Studies in Ada Style.
Springer-Verlag Publishers, 1983.

[Kaiser 82a] Kaiser, G.E, et aL.
GANDALF Environment Users' Manual and Tutorial.
In Second Compendium OfGANDALF Documentation, Carnegie Mellon University Com-

puter Science Department, May, 1982.
The manual presents a walk through the GANDALF Prototype from the user's point of

view. It describes how the user would perform varied operations, along with a
description of the expected (and some unexpected) interactions with the system.

5-17

R1SEARCII IN PROGRAMMING TECHNOLOGY

[Kaiser 82b] Kaiser, G.E and A.N. Habermann.
An Environment for System Version Control.
In Digest of Papers Spring CompCon 83, IEEE, November, 1982.

This paper defined the System Version Control Environment that is one of the major
portions of the GANDALF Prototype. Motivation and definition of the description
and generation process for multiple versions of systems are given.

[Kaiser 82c] Kaiser, G.E. and E. Kant.
Incremental Expression Parsing for Syntax-Directed Editors.
Technical Report CMU-CS-82-141, Carnegie Mellon University Computer Science Depart-

ment,
October, 1982.

This paper presents an alternative to dealing with expressions as either pure structure or
pure text. The algorithm is based on a set of simple transformations that retain the
underlying tree structure of expressions while they are manipulated by the user as
tokens.

[Leivant 81a] Leivant, D.
Implicational Complexity in Intuitionistic Arithmetic.
Journal of Symbolic Logic(46), 1981.

[Leivant 81b] Leivant, D.
On the Proof Theory of the Modal Logic for Arithmetic Provability.
Journal of Symbolic Logic46, 1981.

[Leivant 83a] Leivant, D.
The Optimality of Induction as an Axiomatization of Arithmetic.
Journal of Symbolic Logic48:182-183, 1983.

[Leivant 83b) Leivant, D.
Polymorphic Type Inference.
Conference Record of the Tenth Annual ACM Symposium on Principles of Programming

Languages88-98,1983.

[Leivant 83c] Leivant, D.
Structural Semantics for Polymorphic Data Types.
Conference Record of the Tenth Annual ACM Symposium on Principles of Programming

Languages:155-166, 1983.

(Leverett 82] Leverett, B.W. and P. Hibbard.
An Adaptive System for Dynamic Storage Allocation.
Software-Practice and Experiencel2, 1982.

[Medina-Mora 82]
Medina-Mora, R.
Syntax-Directed Editing: Towards Integrated Programming Environments.
PhD thesis, Carnegie Mellon University, March, 1982.
Also published as CMU.CSD Technical Report CMU-CS-82-113.

Medina-Mora's thesis studies the issues surrounding the generation of syntax-directed
editors that are intended to be the basis of a programming environment (such as
the one proposed by Feiler). Restricted template replacement is used to guarantee
that all structures, actually trees, are syntactically correct, thereby alleviating the

5-13

RESEARCH IN PROGRAMMING TECHNOIOGY

need for parsing. The ALOE system permits generation of editors for particular
languages. Generation of an editor comprises definition of the abstract syntax for a
language, the concrete syntax (which indicates how the internal tree is to be dis-
played to the user), and action routines that define the semantics of the language.
Action routines are associated with particular node types and are invoked as
modifications, such as creation or deletion, occur at nodes.

[Mishra 831 Mishra, B. and E.M. Cl-ke.
Automatic and Hierarchical Verifications of Asynchronous Circuits Using Temporal Logic.
Technical Report CMU-CS-83-155, Carnegie Mellon University Computer Science Depart-

ment
September, 1983.

Establishing correctness of complicated asynchronous circuits is in general quite dif-
ficult because of the high degree of nondeterminism that is inherent in such
devices. Nevertheless, it is also very important in view of the cost involved in
design and testing of circuits. We show how to give specifications for circuits in a
branching time temporal logic and how to mechanically verify them using a simple
and efficient model checker. We also show how to tackle a large and complex
circuit by verifying it hierarchically.

[Nestor 811 Nestor, J.R., W.A. Wulf, and D.A. Lamb.
JDL-Interface Description Language.
Technical Report CMU-CS-81-139, Carnegie Mellon University Computer Science Depart-

ment,
August, 1981.

IDL is a notation for precisely describing structured data used to communicate among
collections of related programs, such as the set of tools in a programming environ-
ment. The notation supports the abstract data type paradigm, separating descrip-
tions into abstract properties and concrete properties. Data can be communicated
between programs written in different languages on different computer systems via
reader/writer utilities which can be generated from the IDL descriptions.

[Notkin 84] Notkin, D.
Interactive Structure-Oriented Computing.
PhD thesis, Carnegie Mellon University, February, 1984.

Notkin's thesis work views the process of structure-oriented editor generations a
general method for constructing general interactive programs. By defining inter-
action in terms of integration (of data development and program execution), in-
cremental computation, and non-sequential data manipulation, Notkin
demonstrates the difficulty of constructing interactive programs given the tradi-
tional technology of files, file systems, parsers, text editors, and so on. The Agave
system is presented as an alternative environment that interactively supports con-
struction of interactive programs modeled as structure-oriented editors. Extensions
to current editor generation systems, particularly in the area of generic operators,
are described. Low-level operating system support, based on a two-level capability-
based addressing scheme, is also given.

[Perlis 81] Perils, A., F. Sayward, and M. Shaw (Eds.).
Software Metrics: An Analysis and Evaluation.
MIT Press, 1981.

5-19

RESEARCH IN PROGRAMMING TECHNOLOGY

[Reif 831 Reif, J. and W. Scherlis.
Deriving Efficient Graph Algorithms.
Logics of Programis(164), 1983.

[Rounds 811 Rounds, W. C. and S. D. Brookes.
Possible Futures, Acceptances, Refusals and Communicating Processes.
In Proceedings of the 22nd Symposium on Foundations of Computer Science. October, 1981.

[Scherlis 83a] Scherlis, W.L. and D.S. Scott.
First Steps Towards Inferential Programming.
In Information Processing 83: Proceedings of the IFIP 9th World Computer Congress July,

1983.
Although logics of programs have contributed significantly to our understanding of

individual programs and to our knowledge of programming language design, they
have had disappointingly little influence on the methods by which programs are
constructed and documented in practice. The reason for this, we suspect, is that the
understanding embodied in these systems deals with individual programs and does
not directly address the process by which programs are constructed. By focusing
attention on this process, attempting to discern the fundamental steps in the evolu-
tion of programs, we propose that it may be possible to develop a logical system
supported by an appropriate machine environment that will be more directly ap-
plicable to programming practice. The benefits of such a point of view will be
discussed.

[Scherlis 83b] Scherlis, W.
Software Development and Inferential Programming.
In Proceedings of the Workshop on Program Transformation and Programming

Environments, November, 1983.

[Scherlis 84) Scherlis, W.
Applicative and Imperative Programs.
In Proceedings of the 1984 Workshop on Formal Software Development Combining Specifica-

tion Methods, May, 1984.

[Schwarz 84] Schwarz, P. and A. Spector.
Synchronizing Shared Abstract Types (Revised Issue).
Transactions on Computer Systems2(3):223-250, November, 1984.

A formalism for specifying the concurrency properties of such types is developed,
based on dependency relations that are defined in terms of an abstract type's
operations. The formalism requires that the specification of an abstract type state
whether or not cycles involving these relations should be allowed to form. Direc-
tories and two types of queues are specified using the technique, and the degree to
which concurrency is restricted by type-specific properties is exemplified. The
paper also discussed how the specifications of types interact to determine the be-
havior of transactions. A locking technique is described that permits implemen-
tations to make use of type specific information to approach the limits of concur-
rency.

[Shaw 81) Shaw, M. (Ed.).
Alphardt Form and ConlenL
Springer-Verlag Publishers, 1981.

1-20

RESEARCH IN PROGRAMMING TECHNOLOGY

[Shaw 821 Shaw, M.
Abstract Data Type,
In A. Ralston, Encyclopedia of Computer Science 2nd. ed. Van Nostrand Reinhold, 1982.

[Shaw 83] Shaw, M., E. Borison, M. Horowitz, T. Lane, D. Nichols, and R. Pausch.
Descartes: A Programming-Language Approach to Interactive Display Interfaces.
In Proceedings ofSIGPLAN '83. Symposium on Programming Language Issues in Sofiware

Systems, Pages 100-111. 1983.

[Shaw 84a] Shaw, M.
The Impact of Modeling and Abstraction Concerns on Modern Programming Languages,
In M. Brodie, J. Mylopoulos and J. Schmidt, On Conceptual Afodeling: Perspectives from

Artificial Intelligence, Databases4 and Programming Languages. Springer-Verlag
Publishers, 1984.

[Shaw 84b] Shaw, M., G.T. Almes, J.M. Newcomer, B.K. Reid and W.A. Wulf.
A Comparison of Programming Languages for Software Engineering,
In A. Feuer and N. Gehani, Comparing and Assessing Programming Languages: Ada, C

Pascal. Prentice-Hall, 1984.

[Sistla 84] Sistla, A.P., E.M. Clarke, N. Francez, A.R. Meyer.
Can Message Buffers Be Axiomatized in Linear Temporal Logic?
In Information and Control, Pages 88-95. Oct/Nov, 1984.
Also appeared in Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, Aug., 1982.
Message passing is one of the primary modes of interprocess communication in a

distributed system. In this paper we investigate the possibility of characterizing and
axiomatizing different message passing systems in temporal logic. Specifically, we
consider FIFO buffers (queues), LIFO buffers (stacks) and unordered buffers
(bags). We show that all bounded buffers are characterizable in propositional tem-
poral logic (PTL) and so are axiomatizable. We prove that the theory of un-1
bounded FIFO buffers is w -complete and so is not axiomatizable. We also prove
that the theories of unbounded LIFO and unordered buffers are decidable and
hence are axiomatizable.

[Spector 83] Spector, A.Z. and P. Schwarz.
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Reviewl7(4), April, 1983.

Transactions have proven to be a useful tool for constructing reliable database systems
and are likely to be useful in many types of distributed systems. To exploit trans-
actions in a general purpose distributed system, each node can execute a trans-
action kernel that provides services necessary to support transactions at higher
system levels. The transaction model that the kernel supports must permit ar-
bitrary operations on the wide collection of data types used by programmers. New
techniques must be developed for specifying the synchronization and recovery
properties of abstract types that are used in transactions. Existing mechanisms for
synchronization, recovery, deadlock management, and communication are often
inadequate to implement these types efficiently, and they must be adapted or
replaced.

5-21

RESEARCH IN PROGRAMMING TECHNOLOGY

[Van Dun 81] Van Dam, A., M. R. Barbacci, C. Halatsis, J. Joosten, M. Letheren.
Simulation of a Horizontal Bit Sliced Processor using the ISPS Architecture Simulation

Facility.
IEEE Computer Society Transactions on ComputersC-30(7), July, 1981.

512

RESFARCH IN DISTRIBUTED SENSOR NETWORKS

6. Research in Distributed Sensor Networks
A Distributed Sensor Network (DSN) is a physically dispersed collection of computers and sensors coupled

loosely through a communications network. Network computers monitor a target environment by cooperating

to process sensor data. Distributing a task so the processing nodes closest to the sensors can do considerable

autonomous processing and decision making presents several challenges. Consider, for example, a network of

processors and microphones assigned to track a moving object. At run time, the system must configure itself

based on current information about the terrain, knowledge about the object under surveillance, and the state

of the network itself. Moreover, in the event of a hardware or software failure in one of its components, the

system should be able to reconfigure itself and continue operating with minimal overall performance degrada-

tion. Our goal was to design and implement such a system.

During the contract period we designed and implemented the following software systems:I
Accent, a communication-oriented operating system whose primitives support transparent net-
working, and system reconfiguring and rebinding

* Network interprocess communication protocols that support dynamic rebinding of active com-
municating computations

" Matchmaker, an interface specification language

" Stardust, a system for dynamic load balancing and fault compensating reconfiguration

The software we built during the contract period has proved valuable in demonstrating key DSN issues. In

addition, much of it supports other CMU research projects and we have exported some to external

laboratories (e.g.. IBM. DEC, and HP) where it has reappeared in commercial applications.

With the aid of our software, we designed and implemented a DSN testbed to demonstrate the feasibility of

building systems that meet the needs for self-knowledge about current state, fast, effective error reporting, a

capacity for fast localized rebinding, and easy reconfiguration.

6.1. A Communication -Oriented Operating System

Our DSN testbed was implemented using Accent, a network operating system that allows flexible, trans-

parent access to distributed resources. Rashid and Robertson [Rashid 81] developed Accent using an innova-

tive design integrating virtual memory, interprocess communication, and permanent storage. Accent forms

the communication-oriented kernel for CMU's Spice operating system (see Chapter 2). We have designed

Accent to:I
* Provide the ability to create and control numerous independent processes on a single processor

that supports interprocess communication.

*Support multiple, independent, virtual address spaces and a virtual machine specification that can

6-1

RESEARCH IN DISTRIBUTED SIENSOR NETWORKS

accommodate diverse interpretations of process state.

" Supply two kinds of protection:
o Address space protection to ensure that no process can affect another except through

the interprocess communication facility
o Access protection in the communication facility itself to prevent unauthorized com-

munication between processes

" Define interprocess communication in a way that allows transparent debugging, monitoring, and
fault recovery.

" Take advantage of the debugging, monitoring, and fault recovery mechanisms to allow trans-
parent network extension independent of network hardware or protocols.

" Allow processes to view all services, except the basic communication primitives, as being provided
through a communication interface.

* Structure message communication so intermediary processes such as debuggers, protocol con-
verters, or network communication servers, can easily interpret the contents and purpose of mes-
sages.

Accent can be viewed as a number of layers, with the system kernel at the bottom and layers of processes

providing successively more complex services building upon each other. Interprocess communication

through ports provides a uniform interface at each level of the system. Because all system objects and

services, including those provided by the kernel, are accessible through messages sent to ports they can be

transparently distributed throughout the system.

During the contract period, we implemented a complete Accent version for the Perq Systems Corporation's

Perq computer (the initial Spice machinae) and deployed it on a network of nearly 150 Perqs within CMU. In

addition, we made the Accent IPC facility available on DEC VAXes under a modified version of UNIX4.1bsd.

We implemented network interprocess communication servers under both Accent and UNIX and extensively

used this IPC facility within the DSN project (e.g. for implementing the testbed) and other DARPA-sponsored

projects at CMU particularly Spice.

6.2. Protocols for Network Interprocess Communication

Network interprocess communication protocols enhance system security and support Accent's ability to

dynamically rebind active, communicating computations. Implementing Accent demonstrated the value of

integrating memory support with interprocess communication.

Accent exemplifies a truly extensible operating system. Accent's port communication concept allows trans-

parent network communication, process monitoring, and debugging without the underlying operating system

kernel's intervening or even knowing. Moreover, user-state processes may extend the opcrating system

without changing the underlying kernel. The right to send a message to a port cannot be forged or acciden-

6-2

AD-R173 828 INFORMATION PROCESSING RESERRCH(U) CARNEGIE-MELLON UNIV 2/2
PITTSBURGH PA DEPT OF COMPUTER SCIENCE E BALL ET AL

SEP 86 AFNAL-TR-8-1011 F336i5-8i-K-i539I UNCLASSIFIED FF6 9/2EEIIIIIIIIIEI
I lllflflllllll
EEIIIIIIEEIII
HllllEE

2

1m6. m

L.11 L

1-25 HH'~ 1.6

!CROCOPY RESOLUTION TEST CHART
N4ATIONAL BUREAU OF STANDARDS-1963-A,

RESEARCH IN DISTRBUTED SENSOR NETWORKS

tally created since processes only have local references to ports. This prevents either buggy or malicious

processes from gaining fraudulent access to resources. Further, it allows a process's author to make a positive

statement about his program's correctness, based on precise knowledge of which other processes can com-

municate with it.

Accent's combined memory/communication provides a clean, kernel-transparent mechanism for cross-

network paging whereby one process can manage another's virtual address space and behavior. To ac-

complish this, Accent can either allocate virtual memory from the kernel, sending it to another process, or

explicitly manage page faults. Since ports can be sent in messages to other processes, it is possible for process

A to send its kernel port to process B. The process system is designed so that process B can manage process

A's behavior, much the same way the virtual memory system allows one process to manage another's virtual

memory. This mechanism forms the basis for remote debugging and monitoring systems.

6.3. An Interface Specification Language

One of the thorniest problems in building a distributed system is interfacing the components. Matchmaker

[Jones 85] provides an interface specification language for use with existing programming languages and

offers:

" A language for specify~ing object-oriented, remote procedure call (RPC) interfaces between
processes executing on the same machine or within the Spice network

" A compiler that converts these specifications into interface code for each of the major languages
used within the Spice environment- including C, Perq Pascal, Common Lisp, and Ada-and
runtime support for type-checking, communicating, synchronizing, and handling exception.

We began work on Matchmaker in 1981 and first used it to specify the user interface to the Accent

operating system kernel. Matchmaker evolved into the effective definition of IPC within the Spice environ-

ment and between Perqs and the CS Department's VAXes running our modified uNix operating system. We

have used Matchmaker in the distributed programming support environment for over 500,000 lines of code in

four major languages.

6.4. Dynamic Load Balancing and Fault Reconf igu ration

Stardust [Hornig 84] is both a language and a system for running programs written in that language. As a

language, Stardust provides an applicative language tool for specifyring the control structure of large dis-

tributed systems such as DSNs. As a system, Stardust provides the runtime support to divide computations

into manageable chunks and distribute them throughout the network at runtime. It also can detect error

conditions and respond by reconfiguring the system based on its specification. We designed and built Stardust

to demonstrate the feasibility of automatic load-balancing and fault recovery in such a network.

6-3

RISEARCIi IN DISTRIBUTI.D SENSOR NIrWORKS

We built a Stardust interpreter that successfully handles a variety of distributed system tasks including: the

DSN prototype, a molecular modeling task, and classical algorithms (e.g. quicksort, Fibonacci sequence, etc.).

The Stardust system successfully demonstrated dynamic load balancing, automatically recovered from failure,

and automatically eliminated runtime sub-computation.

6.5. Prototype for Distributed Sensing

With the aid of Accent, IPC protocols, Matchmaker, and Stardust, we built a DSN testbed. The task we

chose to demonstrate it was locating a single noise source by analyzing signals received at several

microphones. Our strategy was to cross-correlate signal pairs to find the source-sensor time-of-flight dif-

ference for each microphone. Each measurement locates the source on a three dimensional quadratic surface.

Combining several measurements gives the source coordinates.

Our experimental laboratory included eight microphones located in an acoustically isolated room. We used

everyday objects including radios, power drills, and various pre-recorded sounds as subjects for our tracking

system. Our computational environment included software running on several vAx-11/780s and Perqs all

residing on a 3MHz Ethernet. Data from each microphone was sent in Ethernet packets to the active proces-

sors. The number and type of computers could be varied and, in practice, ranged between one and twelve.

Data was fed through a series of processes interconnected via the Accent IPC facility. All code was written in

Pascal.

We built several prototype systems. In the fall of 1982 we demonstrated an early version that used DPL-82

[Ericson 82],a language specifically written for distributed processing. The system tracked a moving object to

within a four inch cube around the sound source. In the summer of 1984, we completed a second system using

Stardust. This second system could also track a moving object and displayed greater fault-tolerance in track-

ing than its predecessors.

6.6. Transaction Based Systems

Building on our work in both distributed sensing and distributed processing, we began developing a

Transaction-based System, TABS) [Spector 84a], to explore other reliability issues in distributed systems. Our

research focuses on building, atop the existing Accent operating system kernel, a general-purpose, object-

oriented transaction mechanism. In TABS, we redefine the "transaction" abstraction, extending it to include

sequences of typed operations on objvzs that themselves are instances of shared data types. The TABS

prototype [Schwarz 84] demonstrated the potential of our strategy and guided our continuing research toward

higher-performance systems that can more fully exploit available parallelism.

6-4

RESEARCH IN DISTRIBUTED SENSOR NETWORKS

6.7. Bibliography

[Daniels 83] Daniels, D. and A.Z. Spector.
An Algorithm for Replicated Directories.
Technical Report CMU-CS-83-123, Carnegie Mellon University Computer Science Depart-

ment,
May, 1983.

This paper describes a replication algorithm for directory objects based upon Gifford's
weighted voting for files. The algorithm associates a version number with each
possible key on every replica and thereby resolves an ambiguity that arises when
directory entries are not stored in every replica. The range of keys associated with a
version number changes dynamically; but in all instances, a separate version num-
ber is associated with each entry stored on every replica. The algorithm exhibits
favorable availability and concurrency properties. There is no performance penalty
for associating a version number with every possible key except on Delete opera-
tions, and simulation results show this overhead is small.

[Ericson 82] Ericson, LW.
DPL-82: A Language for Distributed Processing.
Technical Report CMU-CS-82-129, Carnegie Mellon University Computer Science Depart-

ment,
July, 1982.

DPL-82 is a language for composing programs of concurrently-executing processes.
Processes may be all on a single machine or may be distributed over a set of
processors connected to a network. The semantics of the language are derived
from the underlying interprocess communication facility (IPC) and from the
dataflow model of computation. This paper discusses the major concepts of the
language, namely nodes, arcs, connections, tokens, signals, and activations and
presents examples which illustrate the construction of distributed programs in
DPL-82 with internal arcs, external arcs, and child arcs. Features for process-to-
processor mapping and dead process restart are mentioned.

[Hornig 84] David A. Hornig.
Automatic Partitioning and Scheduling on a Network of Personal Computers.
PhD thesis, Carnegie Mellon University Computer Science Department, December, 1984.
Also published as Technical Report CMU-CS-84-165, November 1984.

[Jones 85] Jones, M.B., R.F. Rashid, and M.R. Thompson.
Matchmaker: An Interface Specification Language for Distributed Processing.
In Proceedings of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

ming Languages, 1985.
Matchmaker, a language used to specify and automate the generation of interprocess.

communication interfaces, is presented. The process of and reasons for the evolu-
tion of Matchmaker are described. Performance and usage statistics are presented.
Comparisons are made between Matchmaker and other related systems. Possible
future directions are examined.

[Rashid 81] Rashid, R.F. and G.G. Robertson.
ACCENT: A Communication Oriented Network Operating System Kernel.
In 8th SOSP Proceedings December, 1981.

Accent is a communication oriented operating system kernel being built at Carnegie-

6-5

RISEARCH IN DISTIUBUTED SENSOR NETWORKS

Mellon University to support the distributed personal computing project, Spice,
and the development of a fault-tolerant distributed sensor network (DSN). Accent
is built around a single, powerful abstraction of communication between processes,
with all kernel functions, such as device access and virtual memory management
accessible through messages and distributable throughout a network. In this paper,
specific attention is loven to system supplied facilities which support transparent
network access and aalt-tolerant behavior. Many of these facilities are already
being provided under a modified version of VAX/UNIX. The Accent system itself is
currently being implemented on the Three Rivers Corp. Perq.

[Rashid 831 Rashid, R.
Accent Kernel Interface Manual.
Technical Report Spice Project. Carnegie Mellon University Computer Science Depart-

ment.
November, 1983.

[Rashid 84a) Rashid, R.F.
Accent: A Distributed Operating System for a Network of Scientific Personal Computers.
In Proceedings of the Convention Informatique 84, September, 1984.

[Rashid 84b] Rashid, R.
Experiences in the design, implementation and use of network operating systems.
In Proceedings of the 1984 Annual Conference of the Italian Computer Society, October,

1984.

[Rashid 84cJ Rashid, R.
Network Operating Systems,
Springer-Verlag Publishers, 1984.

[Schwarz 831 Schwarz, P.M. and A.Z. Spector.
Recovery of Shared Abstract Types.
Technical Report Spice Project, Carnegie Mellon University Computer Science Depart-

ment,
October, 1983.

[Schwarz 84] Schwarz, P.M.
Transactions on Typed Objects.
PhD thesis, Carnegie Mellon University Computer Science Department, December, 1984.
Also published as Technical Report CMU-CS-84-166, December 1984.

Transactions simplify the construction of reliable systems by protecting programmers
from the effects of concurrency and failures. To date, they have been used
primarily in database systems. The limitations of existing strategies for
synchronization and recovery constrain the use of transactions in more general
environments such as file systems, mail systems, and operating systems.

The standard transaction model can be extended by redefining a transaction as a se-
quence of typed operations on objects that are instances of shared abstract types.
This approach allows semantic knowledge about individual tyes to be used in
developing more flexible synchronization and recovery strategies, including ones
that sacrifice basic transaction properties such as serializability. This dissertation
discussed a method for specifying the synchronization properties of shared abstract
types, and an extensible locking technique for their imlementation. This disser-
tation also examines how a shared abstract type's semantics and implemntation

SE6 m 1

RESEARCH IN DISTRIBUTED SENSOR NETWORKS

affect thee choic of a recovery technique. Two new log-based algorithms for
recovery are also presented. The simpler algorithm is easier to implement, and its
resource requirements during recovery are more tightly bounded. The more com-
plex algorithm allows greater concurrency in implementations of shared abstract
types.

Choosing transactions as a fundamental mechanism for concurrency control and
recovery influences the overall structure of a system. The dissertation describes
how synchronization and recovery are implemented in TABS, a system being
developed at Carnegie Mellon that provides an object-oriented transaction
mechanism on top of an existing operating system kernel. The possibility of sys-
tems that incorporate transactions at an even lower level is also discussed.

[Sistla 83] Sistla, A.P.
Theoretical Issues in the Design and Verification of Distributed Systems.
Technical Report CMU-CS-83-146, Carnegie Mellon University Computer Science Depart-

ment,
July, 1983.

[Spector 82] Spector, A.Z.
Performing Remote Operations Efficiently on a Local Network.

Communications of the ACM 25(4), April, 1982.

[Spector 831 Spector, A.Z. and P. Schwarz.
Transactions: A Construct for Reliable Distributed Computing.
Operating Systems Reviewl7(4):82-143, April, 1983.
Also published as CMU-CSD Technical Report CMU-CS-82-143.

Transactions have proven to be a useful tool for constructing reliable database systems
and are likely to be useful in many types of distribUted systems. To exploit trans-
actions in a general purpose distributed system, each node can execute a trans-
action kernel that provides services necessary to support transactions at higher
system levels. The transaction model that the kernel supports must permit ar-
bitrary operations on the wide collection of data types used by programmers. New
techniques must be developed for specifying the synchronization and recovery
properties of abstract types that are used in transactions. Existing mechanisms for
synchronization, recovery, deadlock management, and communication are often
inadequate to implement these types efficiently, and they must be adapted or
replaced.

[Spector 84a] Alfred Z. Spector, Jacob Butcher, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger,
Charles E. Fineman, Abdelsalam Heddaya, and Peter M. Schwarz.
Support for Distributed Transactions in the TABS Prototype.
Technical Report CMU-CS-84-132, Carnegie Mellon University Computer Science Depart-

ment,
July, 1984.

The Tabs proptotype is an experimental facility that provides operating system-level
support for distributed transactions that operate on shared abstract types. It is
hoped that the facility will simplify the construction of highly available and dis-
tributed applications. This paper describes the TABS system model, the TABS
prototype's structure, and certain aspects of its operation. The paper concludes
with a discussion of the status of the project and a preliminary evaluation.

6-7

RESEARCH IN DISTRIBUTED SENSOR NEIWORKS

[Spector 84b] Spector, A.Z. and D. Gifford (eds.).
The Space Shuttle Onboard System.
Communications of the ACM, September, 1984.

[Spector 84c Spector, A.Z..
Software for Process Control.
Scientific American250(9), September, 1984.

[Spector 84d] Spector, A.Z. and P. Schwarz.
Synchronizing Shared Abstract Types.
Transactions on Computer Systems, August, 1984.
Also published as Technical Report CMU-CS-82-128, July 1982.

This paper discusses the synchronization issues that arise when transaction facilities are
extended for use with shared abstract data types. A formalism for specifying the
concurrency properties of such types is developed, based on dependency relations
that are defined in terms of an abstract type's operations. The formalism requires
that the specification of an abstract type state whether or not cycles involving these
relations should be allowed to form. Directories and two types of queues are
specified using the technique, and the degree to which concurrency is restricted by
type-specific properties is exemplified. The paper also discusses how the specifica-
don of types interact to determine the behavior of transactions. A locking tech-
nique is described that permits implementations to make use of type-specific infor-
mation to approach the limits of concurrency.

[Spector 84e] Spector. A.Z. and D. Gifford.
The TWA Flight Reservation System.
CACM, July, 1984.

[Spector 84n1 Spector, A.Z., JJ. Bloch, and D.S. Daniels.
Weighted Voting for Directories: A Comprehensive Study.
Technical Report CMU-CS-84-114, Carnegie Mellon University Computer Science Depart-

men,
April, 1984.

S

RESFARCII IN COOPERATIVE USER INTERFACES

7. Research in Cooperative User Interfaces

Computers provide an ever-expanding range of services to a rapidly growing user pool. Decreasing costs

for raw computing power and new computational techniques now encourage designers to shift their primary

focus away from programs that use hardware efficiently to programs that let users interact easily with operat-

ing systems and application programs. Interacting with most current computer systems remains difficult and

frustrating because of rigid, unnatural command languages and poor help facilities. Ironically, interface

hardware improvements in the new powerful personal computers have done little to alleviate interface

problems. Interfaces using such facilities-e.g. high-resolution bitmap displays and speech processing

capabilities-cost much more to implement than those employing simpler technology. Moreover, fancier

technology does not guarantee the users will find the end product acceptable.

In the Cooperative User Interface project, our goal is to design, implement, and evaluate powerful inter-

faces that appear friendly and supportive to .users. We also aim to construct our interfaces so many different

application programs can use them. During the 1981-84 period, we completed designing and implementing a

prototype user interface management system. Cousin, for the Perq Systems Company's Perq, a powerful, r

bitmapped workstation. Cousin-Spice supports standardized communication between application programs

and a centralized user interface program using graphical objects such as forms and menus. We also developed

a command interface to the UNIX operating system. Cousin-UNIX provides flexible parsing of a UNIX-style

language, interactive error correction of command line errors, and readily accessible help. These interfaces

have allowed us to explore directly the following issues inherent in a truly cooperative user interface:

" Robust communication-an ability to interact with users unhindered by omissions, intejections,
and restarts

" Robust Flexible Parsing-a way for the computer to fill in contextual information and tolerate
syntax deviations by the user.

* Cooperative error-correction--ways to shorten users' mistake-recovery time

"ktedia-rich communication-an ability to exploit, for example, high-resolution graphics, voice
recognition, and pointing devices

" Speech and Natural Language Integration-ways to integrate speech and natural language into
interfaces that make man-machine communication more natural for the user

" Explanation-ways to make help systems easier to use and to improve users' knowledge of the
system's current state.

Graceful interaction with users can be realized using multiple technologies, including: graphics, menus, I
natural language, speech, well-designed command languages, etc. Here we report on our research in develop-

ing natural language interfaces tolerant of errorful, incomplete, or ungrammatical user input, and on its

natural extension to the integration of speech and natural language processing using the same basic flexible-

7-1

Zt.:

RESEARCH IN COOPERATIVE USER INTERFACES

parsing technology.

7.1. Robust Communication

The basic thrust of this area of research is to identify all the information that needs to pass between user and

system to accomplish the user's goals, and to develop ways of making this information transfer as efficient and

natural for the user as possible.

We developed a contextual interpretation mechanism that follows human intuition closely enough to be

natural, but requires no significant cognitive modeling. Our mechanism interprets anaphoric pronouns and

noun phrases, elliptical user responses, or contextually dependent, voluntary iput. n CousinUNLX, te

mechanism parses a user command line* into an internal "form" representation having slots and values. It

provides spelling checks and corrections, phrase completion, and interactive dialogue that obtains information

needed to fill the form enough to execute the command. Using information in the environment and the form

template, the system dynamically creates dialogue messages to fit the situation [Hayes 85].

Cousin-Spice uses the parsing, spelling checks, and completion, and a similar internal environment

representation, but replaces the dialogue with interaction on a graphical form. Defaults, required parameters,

etc., are shown in the forms, and users interact by manipulating the objects (buttons, menus, etc.) and values

in the forms. Highlighting and locking show omissions or invalid information. By making manipulations
"niodeless," the user can restart or switch tasks easily at any time. For example, while in the middle of

specifing a delete operation, the user could request to look at the files in a different format or order. He

could even look at different files or change to a rename command. In Cousin-Spice the context mechanism

interprets the user's initial input, but all further interaction and manipulations are in the form and not by

natural language.

In order to facilitate efficient and natural information transfer, we designed the Cousin-Spice system to

recognize commnon command sequences by macro-level commands. The system provides appropriate assis-

tance to the user in executing such sequences. Users are able to define their own sequences for repeated use.

We also made Cousin capable of multiple-levels of command interaction. Thus users see the same style of

interaction with all application packages [Hayes 83a].

7.2. Robust, Flexible Parsing

Users of natural language interfaces seldom observe all the grammatical niceties that schoolteachers insist

upon. Nor do users, concentrating on the underlying task, spell out all the implicit aspects to language

communication. After all, humans do a fine job at filling in contextual information, and can comprehend

7-2

R.ESEARCII IN COOPERATIVE USER INTERFACES

semantically well-formed but syntactically deviant language. Why should not our machines behave similarly?

Therefore, our research strives to make machine interfaces equally resilient to variability and minor in-

accuracies in the communication medium. To this end, we developed a set of flexible parsers of increasing

sophistication, starting from FlexP, and CASPAR to the more recent DYPAR and MULTIPAR systems.

In 1983 we completed DYPAR-I, the first multbisrategy natural language parser that unifies syntactic,

semantic, and pragmatic constraints, and is capable of ellipsis and anaphora resolution. The DYPAR family of

parsers (now through DYPAR-V) have been distributed to hundreds of sites internationally (academic, govern-

ment and business) and serve as a basis both for academic research projects and potential industrial applica-

tions.

Subsequently, we developed the DYPAR line through DYPAR-V, each increasing the sophistication of the

former systems, and all exploiting the new case-frame instantiation technology that is proving far superior and

more robust than the earlier ATN-based technology. DYPAR-IV and DYPAR-V have been used successfully in

building Xcalibur1, a multi-function natural language interface to expert systems and data bases, and

MedSort2, a system that extracts indexing information by parsing titles of large numbers of medical texts.

7.3. Cooperative Error-correction

The thrust of our research in this area was based on a conviction, derived from experience with our current

system, that efficient error correction requires not only a high degree of interaction, but also error detection,

error correction, and ambiguity recognition techniques tailored to the specific error types that can occur. This

conviction shifted our emphasis toward more specific techniques for dealing with errors, particularly errors

associated with the language and concepts commonly found in the more restricted command interaction

domain.

We developed construction-specific, flexible parsing techniques based on our general techniques for

flexible parsing. These specific techniques allow us to exploit the different roles and ease of recognition of the

various constituents of each type of construction in the languages we will deal with. For example, if the

arguments to a command (cases of a verb) are flagged by keywords (prepositions), strategies for dealing with

grammatically deviant uses of that command (verb phrase) can make use of the fact that the keywords are

much easier to recognize than the parameters (deep cases) they mark. Keywords, for instance, can be scanned

to "realign" a parse thrown off by missing or extraneous constituents. We also determined the specific types

1Xcalibur was a DEC-sponsored project

2MedSorn was an NIH-spnored project

7-3

RESEARCH IN COOPERATIVE USER INTERFACES

of ambiguity that each construction cause, developed formalisms for representing each of these ambiguities

without duplicating unambiguous constituents, and ensured that our construction-spccific parsing techniques

can make use of these representations to report ambiguities. In addition, we developed methods for the

system to ask intelligently directed questions to resolve ambiguities thus represented, and to understand

appropriately economical replies from the user [Hayes 82a]. We used these parsing techniques for the initial

input in Cousin-Spice and used them extensively in Cousin-UNIX.

At the lexical level, we integrated the spelling correction techniques already developed with techniques for

dealing with abbreviations, inflections, and unknown proper names (of files, other users, etc.). We also fully

integrated all aspects of parsing with other parts of the system, so that, for instance, spelling correction will

interact intelligently with the semantic tests of command checking.

A command-checking mechanism common to both Cousin-Spice and Cousin-UNIX in now in place. It

deals with parameter correctness, default provisions, parameter ambiguity resolution, etc. Cousin-Spice is

broken into two major components, the Form-Manager and the Form-Editor. The Form-Manager embodies

most of the facilities in Cousin-UNix, such as the checking, dealing with ambiguities, and parsing. The

Form-Editor handles the interaction between the user and the Manager by means of a graphical display of the

form kept in the Manager and an editor which allows the user to modify that form [Hayes 84]. The low-level

mechanisms are very similar in both Cousin-UNIX and Cousin-Spice.

We investigated ways of displaying error messages from subsystems invoked by Cousin. Initially, little

processing was performed on these messages, but as the system implementation progressed, we devised

methods of relating errors much more closely to the context of the preceding interaction with the interface

[Hayes 83a].

Most of the error messages and subsequent dialogue with the user, which is present in Cousin-UNIX, is not

needed in Cousin-Spice. Whereas, in Cousin-UNLX, the state of the interaction is kept internally and made

available to the user by a dialogue, in Cousin-Spice, virtually the entire state is explicitly shown to the user.

Errors are obvious to the user by sight, or in some cases, through the use of menu selection: The user cannot

make a mistake. For example, to list the contents of a directory, using Chili, it would be impossible for the

user to select a non-editing flag since only the valid flags are shown.

7-4

....... ... m'Z

RESEARCH IN COOPERATIVE USER INTERFACES j

7.4. Media-rich Communication

Interactions restricted to typed commands and character output represent a major source of difficulties
encountered with most current computer systems. Our research in media-rich communications emphasizes
increasing efficiency at the man-machine interface by developing techniques that exploit the capabilities of
high-resolution graphics displays, voice recognition, and pointing devices. 4

For Cousin-Spice, we designed and implemented a graphics support package in Pascal using Spice
Sapphire. This provided powerful facilities for manipulating a high-resolution raster display without intro-
ducing dependencies on display resolution or pixel representation. The package allows concurrent access to a
single display device by multiple processes and provides convenient mechanisms for the allocation of display
resources.

We constructed a set of widely applicable facilities for generating effective displays of information within
the system. The display capabilities include: curve plotting, bar graph generation, and histogram displays.
These utilities are available for use within Cousin-Spice and by applications subsystems to present in for-
mation to the user in an effective manner. We also designed a language for defining data filters. A filter
specifies the mapping from an internal data representation to the graphics display. Multiple filters allow the
same internal information to be presented to the user in different ways.

CUT researchers designed Cousin-Spice's forms and menus; they specified the display format, type, and
(optionally) default value for each field. At this point, applications designers can interface their subsystems
with Cousin. The user interaction facilities available in the system make extensive use of application-specific
information provided by the tool designer in declarative form [Hayes 83a]. The Form-Editor provides the
display. The SDO Editor and the Layout Editor let the application programmer describe an application and
how it should be displayed to the user. Another program generates "help" files from application descriptions.
Cousin-uNix has a similar program.

7.5. Integrating Speech and Natural Language
The successful integration of speech recognition and natural language processing technologies promises -

substantial beneft but poses some serious challenges. The integration problems require a computational
solution in which the natural language component is based on robust case-frame analysis and island-growing
techniques. We based our approach on the best aspects Of DYPAR and MULTIPAR, our earlier natural language

systems which are superior to methods in which the natural language component is based on transition
networks (e.g. ATNs).

7-s

RESEARCH IN COOPERATIVE USER IN'ERFACES

in 1981 we designed and implemented a speech recognition system integrated with a mail system. The

system allowed a user to read, generate, and send messages, controlling the process and receiving instructions

by voice. The voice message system used the Lincoln Lab LPC voice encoder for input and output and

employed a template-based recognizer. The recognizer was partially microcoded on a Perq and had a window-

and menu-based interface (voice substituted for the mouse). Although speed and accuracy allowed the

system to be effectively demonstrated, we believe a higher accuracy than the 6% achieved is necessary to

effectively perform such a task. The system was not extended since it was felt that better recognition al-

gorithms were necessary.

7.6. Explanation

In this area, we are concerned with fulfilling the user's need to know about the system in general: what

commands it will accept and how those commands must be stated (static explanation). Cousin-uNix explains

system requirements (drawn from the tool description) through dialogue with the user [Glasner 81]. Cousin-

Spice automatically generates static explanations through form highlighting [Hayes 82b].

The user will also want information about specific states of the interaction: what the system is currently

doing, why it is doing it, what it expects the user to do, whether certain events have happened, what is the

nature of their outcome. A help system was built for Cousin-Spice which used the context of the current form

to explain the current state of interaction [Hayes 82b],such as listing the fields which are incorrect and what is

.ll wrong with them.

. '-,.-

*4 qm

5.

.p-.

- -... ,-. "'' ? - 7

RESEARCH IN COOPERATIVE USER INTERFACES

7.7. Bibliography

[Ball 821 Ball, J.E. and P.J. Hayes.
A Test-bed for User Interface Designs.
In Proceedings of the Conference on Human Factors in Computer Systems, National Bureau

of Standards, March, 1982.

[Carbonell 841 Carbonell, J.G. and P.J. Hayes.
Recovery Strategies for Parsing Extragrammatical Language.
Technical Report CMU-CS-84-107, Carnegie Mellon University, Computer Science Depart-

ment,
February, 1984.

Practical natural language must exhibit robust behavior in the presence of extragram-
matical user input. This paper classifies different types of grammatical deviations
and related phenomena at the lexical, sentential, and dialogue levels, and presents
recovery strategies tailored to specific phenomena in the classification. These
strategies constitute a tool chest of computationally tractable methods for coping
with extragrammaticality. Some of the strategies have been tested and proven
viable in existing paers.

[Glasner 811 Glasner, I.D. and P.J. Hayes.
Automatic Construction of Explanation Networks for a Cooperative User Interface.
Technical Report CMU-CS-81-146, Carnegie Mellon University, Computer Science Depart-

ment,
August 1981.

This paper is concerned with providing automatically generated on-line explanations to
the user of a functional computer subsystem or tool about what the tool can and
cannot do, what parameters and options are available or required with a given
command, etc. The explanations are given through the COUSIN interface system
which provides a cooperative tool-independent user interface for tools whose ob-
jects, operations, input syntax, display formats, etc. are declaratively represented in
a tool description data base. The explanations are produced automatically from this
data base, with no incremental effort on the part of the tool designer, and in a
single uniform style for any tool that uses COUSIN as its interface. The explanation
facility takes the form of a fine-grained, tightly linked network of text frames
supported by the ZOG menu-selection system. Exactly what information the net
building program, NB, extracts from a tool description, and the way in which this
information is formated in the text frames is controlled by a second declarative
data base called the aspect description. The declarative nature of the aspect descrip-
tion makes is easy to adapt NB to changes in and extensions to the tool description
formalism, and to exeriment with the structure of the explanation network. We
also describe how the appropriate network frame can be found and displayed in
response to specific explanation requests from the user.

[Hayes 82a] Hayes, PJ.
Cooperative Command Interaction through the COUSIN System.
In Proceedings of the International Conference on Man/Machine Systems, Institution of

Electrical Engineers, University of Manchester Institute of Science and Technology,
July, 1982.

Many of today's interactive interfaces to computer systems are sources of great frustra-
tion to their users. The simplest error or incompleteness in a command to such a

7.7

RESEARCH IN COOPERATIVE USER INTERFACES

system is likely to elicit a more or less informative error message and a request to
try again. Different parts of the same interface may use quite different syntax or
conventions for essentially similar functions. The online help, if it exists, may come
in chunks too big to be useful for interactive use, and may be indexed and cross-
referenced inadequately to permit easy location of the information desired. These
and other problems with interactive interfaces have been discussed at length
numerous authors. In the COUSIN (Cooperative user interface) project at Carnegie-
Mellon University, we are working towards user interfaces that appear more
friendly and supportive to their users, thus reducing frustration and enhancing
productivity. This paper will describe our current work on interactive operating
system command interfaces.

[Hayes 82b] Hayes, PJ.
Uniform Help Facilities for a Cooperative User Interface.
In Proceedings of the National Computer Conference, AFIPS, June, 1982.

This paper describes the design of the help and explanation component of a user-
friendly operating system command interface called Cousin. The facility can
provide two kinds of information: (1) static descriptions of the various subsystems
that can be invoked, their parameters, and the syntax that must be used; (2)
dynamically generated descriptions of the state of the current interaction, why that
state has arisen, and what the user's options for action are. Both types of infor-
mation are presented in the same way through a network of small text frames
connected by semantically motivated links in the style of the Zog system. Frames
containing static information are generated automatically for each subsystem from
a declarative description of the subsystem which is also used by Cousin for its
other services, including spelling and grammar correction, and interactive error
resolution. Dynamically generated frames are incorporated temporarily into the
static network with semantic links appropriate to the current command context.

[Hayes 83a] Hayes, PJ. and Szekely, P.A.
Graceful Interaction Through the Cousin Command Interface.
International Journal ofMan-Machine Studiesl9(3):285-305, September, 1983.

Currently available interactive command interfaces often fail to provide adequate error
correction or on-line help facilities, leading to the perception of an unfriendly
interface and consequent frustration and reduced. productivity on the part of the
user. The Cousin project of Carnegie-Mellon University is developing command
interfaces which appear more friendly and supportive to their users, using a form-
based model of communication, and incorporating error correction and on-line
help. Because of the time and effort involved in constructing truly user-friendly
interfaces, we are working on interface systems designed to provide interfaces to
many different application systems, as opposed to separate interfaces to individual
applications. A Cousin interface system gets the information it needs to provide
these services for a given application from a declarative description of that
application's communication needs.

[Hayes 83b] Hayes, PJ. and D.R. Reddy.
Steps Toward Graceful Interaction in Spoken and Written Man-Machine Communication.
International Journal of Man-Machine Studiesl9(3):211-284, September, 1983.

7-8

RESEARCH IN COOPERATIVE USER INTERFACES

[Hayes 841 Hayes, PJ.
Executable Interface Definitions Using Form-Based Interface Abstractions,
In H.R. Hartson, Advances in Compuier-Human Inieraciion. Ablex, 1984.

The integral bit-map displays and considerable computational power of the new
generation of personal workstations offer the possibility of excellent user inter-
faces. Yet this potential is often unfulfilled because of the cost and complexity of
building user interfaces that fully exploit the available resources. A solution to this
problem is to define user interfaces through a language embodying appropriate
interface abstractions. Such interface definitions can be interpreted by a central
interface system to realize an interface that a user can interact with. If the interface
abstractions employed are at a suitably high level, the task of constructing in-
dividual interfaces is much simplified, with the complexities of exploiting sophis-
ticated interface hardware limited to the construction of the central interface sys-
tem.

A specific set of interface abstractions is presented. The abstractions are oriented
around a form-filling metaphor of communication between user and application
program. They are suitable for defining command interfaces for many, but not all,
applications. An attempt is made to delimit their range of applicability.

An interface system that runs on a Perq, a powerful personal workstation, is described.
This interface system can interpret interface definitions expressed in a language
embodying the interface abstractions just mentioned. The result of this inter-
pretation is a graphical interface with many user-friendly features. An example of
an interface description definition and the interface that results from it is given.

[Hayes 85] Hayes, P.J., P.A. Szekely, and R.A. Lerner.
Design Alternative for User Interface Management Systems Based on Experience with

Cousin.
In CHI '85 Proceedings, April, 1985.

User interface management systems (UIMSs) provide user interfaces to application
systems based on an abstract definition of the interface required. This approach
can provide higher-quality interfaces at a lower construction cost. In this paper we
consider three design choices for UIMSs which critically affect the quality of the
user interfaces built with a UIMS, and the cost of constructing the interfaces. The
choices are examined in terms of a general model of a UIMS. They concern the
sharing of control between the UIMS and the application it provides interfaces to,
the level of abstraction in the definition of the sequencing of the dialogue. For
each choice, we argue for a specific alternative. We go on to present Cousin, a
UIMS that provides graphical interfaces for a variety of applications based on
highly abstracted interface definitions. Cousin's design corresponds to the alter-
native we argued for in two out of three cases, and partially satisfies the third. An
interface developed through, and run by Cousin is described in some detail.

7-9
w'.

RESIARtCII IN IN'rFl{RA1 LD VISI SYSTEMS

8. Research in Integrated VLSI Systems

Very large scale integration (VLSI) technology promises to profoundly change the face of computing by

providing cheap and massively parallel machines. We face three challenges in realizing this promise: laming

the complexity of designing systems with billions of transistors, understanding how technology affects ar-

chitecture and how architecture changes with technology, and learning how to design highly parallel machines

that make efficient use of hardware resources and integrate them into application systems.

Our activities during the contract period, all motivated by these themes, fall into three general classes:

theory, systems and design tools.

" VLSI Theory-Traditional models of computational complexity are incapable of capturing the
behavior of large VLSI systems. First. new issues arise because of the availability of massive
parallelism, and issues of communication and synchronization become central. Second, new
hardware constraints bring technology issues into greater prominence: a central example is that
although traditional models stress the cost of gates and de-emphasize the cost of interconnection,
exactly the opposite is true for VLSI.

The VLSI theory effort at CMU prior to 1981 pioneered new models of computational complexity
and effective parallel architecture design. This included the formulation of the concept of systolic
algorithms, which allow the creation of very high performance, yet simple to build, VLSI systems.
Since 1981, we have made great progress in understanding the design of systolic algorithms and in
applying theoretical tools to previously ill-formed implementation issues such as wafer scale in-
tegration, problem decomposition for special-purpose processors, and global synchronization.

" VLSI Systems--Beginning in 1981, our VLSI systems work has had two thrusts: developing
parallel architectures for specific application areas, and designing custom chips and integrating
them into realistic working systems. The architecture work stresses the analysis and exploitation
of application and algorithm features to allow the design of highly efficient parallel architectures
whose communication, computation and control resources are closely tailored to the problem.
Our hardware work has concentrated on building our expertise in chip and system design, proving
architectural concepts, and gaining experience that will guide us in further theoretical and prac-
tical work.

11,

" VLSI Design Tools-For designs of the tremendous complexity provided by VLSI technology to
be feasible, they must be supported by sophisticated computer aided design tools. This is espe-
cially true for special purpose systems, whose design cost represents a large portion of system cost
due to low volume. Our work on design tools, concentrating largely on design validation
problems, has resulted in a number of novel tools and algorithms, both powerful and CPU-
efficient, that have aided our own design work and have been distributed to hundreds of other
sites.

8.1. VLSI Theory

Over the past four years, our VLSI theory efforts have been increasingly guided by our experience in the

design of algorithms, chips, and systems. Accordingly, our results have been oriented more and more toward

using theoretical tools to gain insight into ill-structured real-world problems. Our results fall into three main

I 8-1

RESEARCil IN INTEGRATED VLSI SYSTEMS

areas:

" Algorithms--We have continued our work on developing individual systolic algorithms and un-
derstanding their propcrtics. We have also worked on algorithms that do not fit neatly into the
systolic framework, but that share similar features.

" Theory of algorithm design-In an effort to provide understanding of and tools for the design of
systolic algorithms, we have developed a number of approaches. We have developed both math-
ematical and intuitive tools for describing and manipulating systolic algorithms.

" Implementation issues--As we and other groups gain experience in VLSI system design, various
implementation issues arise for which theoretical analysis is valuable. We have carried out
theoretical investigations of global synchronization, wafer scale integration and fault tolerance,
and the problems involved in partitioning large problems to run on a fixed-size special purpose
device.

8.1.1. Algorithms

While gaining a greater understanding of the systolic approach to parallel computing and building actual
systolic prototypes, we have designed a large number of individual systolic and near-systolic algorithms.

These include algorithms for the following problems:

* polynomial GCD [Brent 82a, Brent 84a]

* integer GCD [Brent 83a, Brent 84b]

* computational geometry problems [Chazelle 82)

* median and related filtering [Fisher 82a, Oflazer 83]

* dictionary problems [Fisher 84a]

* regular language recognition [Foster 82, Foster 83, Foster 84]

* image convolution [Kung 82a, Kung 83a, Kung 84a]

* computational algebra [Kung 83b]

8.1.2. Theory of algorithm design

Since parallel algorithms are often harder to design, understand, and prove correct than serial algorithms,

the question of formal systems for manipulating systolic algorithms has received much attention. Two key
contributions were made at CMU. Lam and Mostow [Lam 83] have produced a prototype system, based on
program transformation principles, that helps a user transform a serial program into a systolic parallel
program. Kung and Lin [Kung 84b, Kung 83c] have developed an algebra for manipulating and proving

correctness properties of systolic algorithms.

8-2

RISEARCHI IN INTEGRATED VLSI SYSTEMS

8.1.3. Implementation issues

An important issue in implementing special-purpose hardware is how to decompose problems that are too

large to be solved in a single pass. Hong and Kung [Hong 81] have developed a model for the 1/O costs of

problem decomposition, based on an abstract pebbling game. Using this formalism, they derived lower

bounds on communication costs depending on algorithm properties. In a more applied vein, Kung and

Yu [Kung 82b) have cxplored some of the practical issues of problem decomposition on a machiine incor-

porating multiple special-purpose devices.

Another implementation issue, and one that assumes increasing importance as systems include more proces-

sors, is synchronization. As systems become more complex, global synchronization by means of a broadcast

clock signal becomes more difficult to implement. Fisher and Kung [Fisher 83aJ have developed a model of

the timc costs of global synchronization, and have derived upper and lower bounds for clocking different

array topologies under different assumptions about clock skew. A typical result is that two-dimensional arrays

are inherently harder to clock than one-dimensional arrays.

A third implementation issue that we have examined is Wafer scale integration of VLSI processor arrays.

Using an entire silicon wafer for a system provides obvious density advantages, but necessitates the use r'f

redundancy and fault tolerant design to achieve acceptable yield. Kung and Lam [Kung 83d, Kung 844l have

shown how the delays introduced by faulty elements of an array can be "hidden" in the normal timing

scheme of a systolic array, and have performed simulation studies producing wafer yield estimates for varying

defect densities.

8.2. VLSI Systems

Our VLSI systems work continues to emphasize the development of task-specific architectures and chips

that serve as system building blocks. The areas we have developed architectures in include database manage-

ment, production systems for artificial intelligence, speech understanding, and systolic processing. We have

developed two building block chips for systolic arrays, along with a multi-purpose board level systolic proces-

sor. We have also built chips for a number of specific applications, including move generation for a high-

performance chess playing machine. We highlight a few examples below.

8.2.1. Architectures

During the 1981-84 period, our work on implementing systolic arrays shifted from single-purpose

prototypes to programmable architectures capable of serving many applications. Our first such endeavor was

the design, implementation, and system integration of the programmable systolic chip described in 8.2.2. This

guided the design of a successor, the Warp processor (which has subsequently been constructed under the

8-3

JK*~ al

RESEARCH IN INTEGRATED VlSI SYSTEMS

auspices of the DARPA Strategic Computing program) and a related interconnection chip, the UNC(described

below).

In collaboration with the artificial intelligence group at CMU, we have been pursuing the design of efficient

parallel architectures for interpreting production systems. We began by analyzing a set of existing production

systems and evaluating the potential speedup available through parallel implementation. This study [Gupta

84a] concluded that massive parallelism would not be helpful in executing OPS5-like production systems.

Using these results, two parallel architectures have been developed: Gupta [Gupta 84b] has proposed a

bus-based architecture, and Oflazer [Oflazer 84] has proposed a tree-structured architecture. Further studies

continue under the DARPA Strategic Computing project.

Another application we have examined is parallel processing of large databases. We have carried out three

studies with varying emphasis. Song [Song 81a] proposed a tree-structured machine for backend database

processing and studied its properties. Lehman [Lehman 81) developed a systolic system for database trans-

action processing. Oflazer carried out a design study for a VLSI reimplementation of an existing parallel

database machine.

We have produced and evaluated various designs of custom systems suitable for beam search algorithms.

After recognizing that no programmable machine could attain the desired cost/performance ratio and that

many components of beam search (e.g. the heuristic pruning function) should be programmable, we decided

to build a set of tools that would help automate the design of custom systems for beam search. We used a

self-timed architecture which freed us from the requirement of finely tuned hardware because it could

correctly interconnect components of variable speed. We successfully designed, fabricated, and tested a num-

ber of basic components: latches, adders, and multipliers. We designed a set of tools that translates an

algorithm's graphical representation into a wirelist of basic components. Although the graphical description

proved inconvenient, we identified a number of optimizations of the algorithm for silicon implementation.

Our initial desire was to build enough tools to be able to close the design loop only after having a realistic

layout of a chip, but we could not build a satisfactory layout estimation tool because of the complexity and

manpower requirements of the task. We did design and build a time analyzer which could identify the delay

between the input and different parts of the design when the system was in steady state. This tool allowed us

to identify the approximate performance of the design and to place pipeline latches in the best way.

8-4

RISEARCII IN INl nGRA IF.D VL.SI SYSTEMS

8.2.2. Chips

Our first foray into the construction of programmable systolic arrays as well as the design of complex chips

was the programmable systolic chip

(PSC) [Fisher 84b, Kung 83e]. Conceived at the end of 1981 and reduced to silicor a year later, the PSC is a

single-chip microprocessor designed to be used in groups to implement high-performance systolic arrays. Its

novel structure is tailored to the computation, communication and control requirements of systolic al-

gorithms. The PSC was fabricated hy MOSIS, and an image processing array built from PSCs has been

demonstrated.

In conjunction with the design of the Warp processor, a board-level follow-on to the PSC, Hsu, Kung and

Sussman have designed LNC [Hsu 841, a high-performance interconnection chip. A LINC (Link and Inter-

connect Chip) includes a crossbar and delay elements, and serves as the communication medium among the

functional elements of a single high-performance processing element. The uNC is being fabricated by

General Electric in 1.2 micron CMOS.

An especially successful chip has been designed by Ebeling [Ebeling 84a] for use in a chess machine. The

chip computes, for a given game position and given square of a chess board, all possible legal moves to that

square. Thus 64 chips can be used in parallel to generate all possible moves from any one position. The chip

also contains support for the usual search algorithms used in game playing. Ebeling and Slomer have

constructed a special-purpose machine incorporating 64 custom chips and a bit-slice controller. The resulting

system has attained the highest rating ever held by a chess program, and recently won the 1985 ACM

computer chess championship.

Foster developed a series of chips implementing regular expression matching algorithms, furthering his and

Kung's work on pattern recognition algorithms. The particularly interesting feature of these chips is that

rather than being specialized for particular expressions at the mask level, they were designed for customiza-

tion by laser disconnection of metal wires [Foster 83, Foster 82]. The chips were fabricated by MOSiS, and

successfully programmed and tested in collaboration with MIT Lincoln Laboratories.

Raibert and his colleagues have exploited the physical, as well as the electronic, properties of silicon chips to

build a series of novel tactile sensor chips [Raibert 82a, Raibert 82b]. The basic idea is to leave windows in the

chip's protective glass coating, allowing electrical contact with metal wires on the chip, and to cover the chip

with a conductive elastomer. Different pressures on the chip surface then result in different current flows

among the electrical nodes on the chip. On-chip processing aids in the analysis of the pressure data thus

obtained.

8-5

RESEARCH IN INTEGRATED VLSI SYSTEMS

A more applied example of our chip-building experiments was the design and usC of a custom chip 1br

testing custom chips. Ebeling and Frank designed a chip for sending and receiving large test vectors under
microprocessor control, and thcy and Anantharaman constructed a tester using a group of mosis chips. The

tester has been in use for several years and has been used on many later designs.

8.3. VLSI Design Tools

We have centered our VLSI design tool work on the themes of analyzing the needs of designers, and then

analyzing the properties of typical design databases to determine efficient algorithms. This approach has

resulted in a number of tools that give great leverage in the design of complex systems, yet run with great
resource efficiency. In particular, we have implemented and distributed a pair of circuit extractors, one flat
and one hierarchical, a circuit comparator, and a tool that evaluates the yield characteristics of a layout under
various defect density assumptions. To support our own system building efforts, we have also constructed a

powerful circuit board design system and a suite of chip-testing software.

One of the basic steps in current VLSI design practice is to extract an abstract circuit representation of a

given chip layout. Gupta's ACE [Gupta 83aJ, the first of two high performance circuit extractors written at
CMU, has been distributed to hundreds of academic and industrial sites, and is one of the fastest "flat"

extractors in existence. Following ACE'sSsuccess, Gupta and Hon [Gupta 83b, Hon 831 collaborated to

produce a second extractor, HMX, that exploits the hierarchical structure of a VLSI layout to reduce process-

ing time.

A particularly helpful way to use the extracted layout is to compare it with a circuit specification generated

either by a netlist language or a schematic capture system. Ebeling designed and implemented a hashin-
based graph matching algorithm that performs this task very rapidly. His program Gemini [Ebeling 83], is in

use at a large number of labs outside CMU. Locally, its use has measurably improved our chip design

productivity by eliminating a major class of layout errors

Another facet of layout analysis is yield estimation. Walker's VLAsic [Walker 83a] is an integrated circuit

yield simulator that models the functional yield loss caused by local process faults such as oxide pinholes.

extra and missing material, and junction leakage. The simulator uses a Monte Carlo process of placing defects

on a layout according to the statistics observed in the fabrication line and analyzing them to determine what

circuit faults have occurred. VLASic can function as a component in application systems, such as a statistica

design rule developer, an inductive fault analyzer, or a redundancy analyzer. The Semiconductor Research

Corporation also supports this work.

We have also developed two tools targeted more for practical utility than for research value. The first is a

946

RISI-ARCI I IN INTEGRAf 11-) VLSI SYSTEMS

printed circuit board design package that guarantces correctness of connectivity and design rules and is also

capaible of automatic routing. 'Ibe second is a %oftwarc package [I~bcling 84b] for our custom chip-based chip

tester. Both tools have seen heavy use in our experimnental work.

8-7

RESLARCII IN INTEGRATED VLSI SYSTEMS

8.4. Bibliography

[Anantharaman 84]
Anantharaman, T., M. Annaratone, and R. Bisiani.
A Family of Custom VLSI Circuits for Speech Recognition.
In ICASSP 84, IEEE, March, 1984.

[Annaratone 84a] Annaratone, M.
Let's Design CMOS Circuits! - Part One.
Technical Report CMU-CS-84-101, Carnegie Mellon University Computer Science Depart-

ment,
January, 1984.

[Annaratone 84b]Annaratone, M. and W.Z. Shen.
The Design of an LSI Booth Multiplier: nMOS vs. CMOS Technology.
Technical Report CMU-CS-84-150, Carnegie Mellon University Computer Science Depart-

ment,
September, 1984.

[Bentley 81] Bentley, 1. and T. Ottmann.
The Complexity of Manipulating Hierarchically Defined Sets of Rectangles.
Technical Report CMU-CS-81-109, Carnegie Mellon University Computer Science Depart-

ment,
April, 1981.
Also available in Proceedings: Tenth International Symposium on the Mathematical Foun-

dations of Computer Science, August 1981.

[Bentley 82] Bentley, J.L.
The Interaction of VLSI Theory and Practice: A Case Study.
In Proceedings of the Conference on Advanced Research in VLSI, January, 1982.

[Bentley 83] Bentley, J.L. and H.T. Kung.
An Introduction to Systolic Algorithms and Architectures.
Naval Research ReviewsXXXV(Two):3-16, 1983.

[Bisiani 82a] Bisiani, R. and A. Waibel.
Performance Trade-offs in Search Techniques for Isolated Word Speech Recognition.
In International Conference on Acoustics, Speech and Signal Processing, IEEE-ASSP, May,

1982.

[Bisiani 82b] Bisiani, B., M.J. Foster, H.T. Kung, and K. Oflazer.
MISE: Machine for In-System Evaluation of Custom VLSI Chips for Real-Time Systems.
Technical Report CMU-CS-82-132, Carnegie Mellon University Computer Science Depart-

mnent,
September, 1982.
Also in 'Proceedings of Real-Time Systems Symposium,' Dec 1982.

[Bisiani 83a) Bisiani, R., H. Mauersberg, and R. Reddy.
Task-Oriented Architectures.
Proceedings of the IEEE, July, 1983.

84

RI SEARCHI IN INTEGRATED VLSI SYSIEMS

[Bisiani 83b] Bisiani, R., M. Annaratone, and M.J. Foster.
An Architecture for Real Timc Debugging of Custom VLSI Chips.
In 1983 International Symposium on VLSi Technology, Systems and Applications, March,

1983.

[Bisiani 83c] Bisiani, R.
A Class of Data-flow Architectures for Speech Recognition.
In Proceedings of the 1983 IEEE International Conference on Acoustics, Speech and Signal

Processing, IEEE, April, 1983.

[Bisiani 83d] Bisiani, R. and R. Reddy.
Task-Oriented Architectures.
In Proceedings of the IEEE, IEEE, July, 1983.

[Bisiani 84] Anantharaman, T., M. Annaratone and R. Bisiani.
A Family of Custom VLSI Circuits for Speech Recognition.
In IEEE International Conference on Acoustics Speech and Signal Processing, March, 1984.

[Bojanczyk 811 Bojanczyk, A., R.P. Brent, and H.T. Kung.
Numerically Stable Solution of Dense Systems of Linear Equations Using Mesh-Connected

Processors.
Technical Report CMU-CS-81-119, Carnegie Mellon University Computer Science Depart-

ment,
January, 1981.

[Bojanczyk 841 Bojanczyk, A., R.P. Brent and H.T. Kung.

Numerically Stable Solution of Dense Systems of Linear Equations Using Mesh-Connected
Processors.

SIAM Journal on Scientific and Statistical Computing5(1):95-104, March, 1984.

[Brent 82a] Brent, R.P. and H.T. Kung.
Systolic VLSI Arrays for Polynomial GCD Computation.
Technical Report CMU-CS-82-118, Carnegie Mellon University Computer Science Depart-

ment,
May, 1982.
See Brent and Kung Aug. 1984, IEEE Transactions on Computers c-33(8) for abstract.

[Brent 82b] Brent, R.P. and H.T.Kung.
A Regular Layout for Parallel Adders.
In IEEE Transactions on Computers, Pages 260-264. IEEE, March, 1982.

[Brent 83a] Brent, R.P. and H.T. Kung.
Systolic VLSI Arrays for Linear-Time GCD Computation,
In Anceau, F. and EJ. Aas, VLSI '83, Pages 145-154. North-Holland, 1983.

The problem of finding a greatest common divisor (GCD) of any two nonzero
polynomials is fundamental to algebraic and symbolic computations, as well as to
the decoder implementation for a variety of error-correcting codes. This paper
des-cribes new systolic arrays that can lead to efficient hardware solutions to both
the GCD problem and the extended GCD problem. The systolic arrays have been
implemented on the CMU programmable systolic chip (PSC) to demonstrate its
application to the decoder implementation for Reed-Soloman codes. The integer
GCD problem is also considered, and it is shown that a linear systolic array of 0(n)

8-9

RESEARCHI IN INTEGRATED VLSI SYSTFIMS

cells can compute the GCI) of two n-bit integers in time 0(n).

[Brent 83b] Brent, R.P., H.T. Kung, and F.T. Luk.
Some Linear-Time Algorithms for Systolic Arrays.
In Proceedings of the IFIP 9th World Computer Congress. Pages 865-876. IFIP, September,

1983.

[Brent 84a] Brent. R.P. and H.T. Kung.
Systolic VLSI Arrays for Polynomial GCD Computation.
IEEE Trans on ComputersC-33(8):731-736, August, 1984.

The problem of finding a greatest common divisor (GCD) of any two nonzero
polynomials is fundamental to algebraic and symbolic computations, as well as to
the decoder implementation for a variety of error-correcting codes. This paper
describes new systolic arrays that can lead to efficient VLSI solutions to both the
GCD problem and the extended GCD problem.

[Brent 84b] Brent, R.P. and H.T. Kung.
A Systolic Algorithm for Integer GCD Computation.
Technical Report CMU-CS-84-135, Carnegie Mellon University Computer Science Depart-

ment,
June, 1984.
Also appeared in Transactions on Computers.

We show that the greatest common divisor of two n-bit integers (given in the the usual
binary representation) can be computed in time O(n) on a linear array of O(n)
identical systolic cells, each of which is a finite-state machine with connections to
its nearest neighbors.

[Chazelle 81al Chazelle, B.M. and L.M. Monier.
Optimality in VLSI.
In First International Conference on Very Large Scale Integration, Pages 269-278. August

1981.

[Chazelle 81b] Chazelle, B.M. and L.M. Monier.
Unbounded Hardware is Equivalent to Deterministic Tuning Machines.
In First Conference on Foundations of Software Technology and Theoretical Computer

Science, December, 1981.

[Chazelle 81c] Chazelle. B.M. and L.M. Monier.
A Model of Computation for VLSI with Related Complexity Results.
In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, Pages 318-325.

ACM SIGACT, May, 1981.

[Chazelle 81d] Chazelle, B.M. and L.M. Monier.
Towards More Realistic Models of Computation for VLSI.
In Proceedings of the Second CalTech VLSI Conference, California Institute of Technology,

January, 1981.

[Chazelle 82] Chazelle, B.
Computational Geometry on a Systolic Chip.
Technical Report CMU-CS-82-119, Carnegie Mellon University Computer Science Depart-

ment,
May, 1982.

8-10

RI-SARCI! IN IN'IGRATED VLSI SYSTEMS

This paper describes systolic algorithms for a number of geometric problems. Im-
plementations yielding maximal throughput are given for solving dynamic versions
of convex hull, inclusion, range and inverse range search, point location, inter-
section, triangulation, and closest-point problems.

[Dohi 82] Dohi, Y., A.L. Fisher, H.T. Kung and L.M. Monier.
The Programmable Systolic Chip: Project Overview.
In Proceedings of Workshop on Algorithmically- Specialized Computer Organizations, Sep-

tember, 1982.

[Ebeling 83] Ebeling, C. and 0. Zajicek.
Validating VLSI Circuit Layout by Wirelist Comparison.
In Proceedings of the 10th Annual International Symposium on Computer Architecture, Pages

172-173. IEEE, September, 1983.
The correctness of a VLSI circuit layout can be accomplished by comparing the wirelist

extracted from the layout with the specification wirelist. We describe a program
that compares wirelists using a very efficient graph isomorphism algorithm that
works well for practical circuits.

[Ebeling 84a] Ebeling, C.E.
A VLSI Chess Move Generator.
In Proceedings of the llth Annual International Symposium on Computer Architecture, June,

1984.

[Ebeling 84b] Ebeling, C.
A Minimal Software Package for the CMU Chip Tester.
Technical Report VLSI Memo # 149, Carnegie Mellon University Computer Science

Department,
1984.

[Fisher 81] Fisher, A.
Systolic Algorithms for Running Order Statistics in Signal and Image Processing,
In Kung, H.T., R.F. Sproull, and G.L. Steele Jr., VLSI Systems and Computations, Pages

265-272. Computer Science Press, Inc., 1981.
Median smoothing, a filtering technique with wide application in digital signal and

image processing, involves replacing each sample in a grid with the median of the
samples within some local neighborhood. As implemented on conventional com-
puters, this operation is extremely expensive in both computation and communica-
tion resources. This paper defines the running order statistics (ROS) problem, a
generalization of median smoothing. It then summarizes some of the issues in-
volved in the design of special purpose devices implemented with very large scale
integration (VLSI) technology. Finally, it presents algorithms designed for VLSI
implementation which solve the ROS problem and are efficient with respect to
hardware resources, computation time, and communication bandwidth.

[Fisher 82a] Fisher, A.L.
Systolic Algorithms for Running Order Statistics in Signal and Image Processing.
Journal of Digital SystemsVl(2/3):251-264, Summer/Fall, 1982.
A preliminary version appears in Kung, H.T., R.F. Sproull, and G.L. Steele, Jr. (editors),

VLSI Systems and Computations, Computer Science Press, Inc., 1981.

a-11

RESEARCH IN INTEGRATED VLSI SYSFMS

[Fisher 82b] Fisher, A.L. and 11I'. Kung.
Synchronizc Large Systolic Arrays.
In Proceedings of the SPIE Vol. 341, Real-Time Signal Proceedings V, SPIE, May, 1982.

[Fisher 82c] Fisher, A.L. and H.T. Kung.
Special-Purpose VLSI Architectures: General Discussions and a Case Study.
In Proceedings of the USC Workshop on VLSI and Modern Signal Processing, November,

1982.
Cited in Kung and Lin 83 'An Algebra for VLSI Algorithm Design'.

[Fisher 83a] Fisher, A.L. and H.T. Kung.
Synchronizing Large VLSI Processor Arrays.
In Proceedings of the 10th Annual International Symposium on Computer Architecture, Pages

54-58. Jun, 1983.
Highly parallel VLSI computing structures consist of many processing elements operat-

ing simultaneously. In order for such processing elements to communicate among
themselves, some provision must be made for synchronization of data transfer. The
simplest means of synchronization is the use of a global clock. Unfortunately, large
clocked systems can be difficult to implement because of the inevitable problem of
clock skews and delays, which can be especially acute in VLSI systems as features
sizes shrink. For the near term, good engineering and technology improvements
can be expected to maintain the feasibility of clocking in such systems; however,
clock distribution problems crop up in any technology as systems grow. An alter-
native means of enforcing necessary synchronization is the use of self-timed,
asynchronous schemes, at the cost of increased design complexity and hardware
cost. Realizing that different circumstances call for different synchronization
methods, this paper provides a spectrum of synchronization models; based on the
assumptions made for each model, theoretical lower bounds on clock skew are
derived, and appropriate or best-possible synchronization schemes for large
processor arrays are proposed.

One set of models is based on assumptions that allow the use of pipelined clocking
scheme, where more than one clock event is propagated at a time.

[Fisher 83b] Fisher, A.L., H.T. Kung, L. M. Monier, H. Walker and Y. Dohi.
Design of the PSC: A Programmable Systolic Chip.
In Bryant, R., Editor, Proceedings of the Third Caltech Conference on Very Large Scale

Integration, Pages 287-302. California Institute of Technology, March, 1983.
The CMU programmable systolic chip (PSC) is a high performance, special-purpose,

single-chip microprocessor intended to be used in groups of tens or hundreds for
the efficient implementation of a broad variety of systolic arrays. For implement-
ing these systolic arrays, the PSC is expected to be at least an order of magnitude
more efficient than conventional microprocessors. The development of the PSC
design, from initial concept to a silicon layout, took slightly less than a year. The
PSC project represents an integration of many disciplines including applications,
algorithms, architecture, microprocessor design, and chip layout. This paper
describes the goals of the project, the design process, major design features and
current status.

8-12

RESARCII IN INTEGRATFI VLSI SYSTEMS

[Fisher 83c] Fisher, A.L.. H.T. Kung, L.M. Monier, and Y. Dohi.
Architecture of the PSC: A Programmable Systolic Chip.
In Proceedings of the 10th Annual International Symposium on Computer Architecture, Pages

48-53. IEEE, June, 1983.
A later version appears in Journal of VLSI and Computer Systems. See Fisher 84b for

abstract.

[Fisher 84a] Fisher, A.L
Dictionary Machines with a Small Number of Processors.
In Proceedings of the 11th Annual International Symposium on Computer Architecture,

IEEE, June, 1984.
A number of tree-structured multiprocessor designs have been proposed for perform-

ing a group of dictionary operations (INSERT, DELETE, EXTRACTMIN,
NEAR. etc.) on a set of keys. These designs typically use one processor for each
key stored and operate with constant throughput, assuming unit time to communi-
cate and compare keys. This assumption breaks down in applications with long
keys. This paper describes a machine which uses a number of processors propor-
tional to the maximum length of a key to achieve constant throughput, regardless
of key length. This design has important practical advantages over the family of
tree-structured machines, and demonstrates that processor-intensive VLSI struc-
tures are not always the best route to a high-performance system.

[Fisher 84b] Fisher, A.L., H.T. Kung, L.M. Monier and Y. Dohi.
The Architecture of a Programmable Systolic Chip.
Journal of VLSI and Computer Systemsl(2):153-169, 1984.
An earlier version appears in Conference Proceedings of the 10th Annual Symposium on

Computer Architecture, Stockholm, Sweden, June 1983, pp. 48-53.
In recent years, many systolic algorithms have been proposed as solutions to computa-

tionally demanding problems in signal and image processing and other areas. Such
algorithms exploit the regularity and parallelism of problems to achieve high per-
formance and low I/O requirements. Since systolic algorithms generally consist of
a few types of simple processors, or systolic cells, connected in a regular pattern,
they are less expensive to design and implement than more general machints.

This advantage is offset by the fact that a particular system can generally be used only
on a narrow set of problems, and thus design cost cannot be amortized over a large
number of units. One way to approach this problem is to provide a programmable
systolic chip (PSC), many copies of which can be connected and programmed to
implement many systolic algorithms.

The systolic environment, by virtue of its emphasis on continuous, regular flow of data
and fairly simple pre-cell processing, imposes new design requirements for
programmable processors which are quite different from those found in a general-
purpose system. This paper describes the CMU PSC, a single-chip microprocessor
suitable for use in groups of tens or hundreds for the efficient implementation of a
broad variety of systolic arrays. The processor has been fabricated in nMOS, and is
undergoing testing.

[Fisher 84cJ Fisher, A.L., H.T. Kung and, K. Sarocky.
Experience with the CMU Programmable Systolic Chip.
In Proceedings of SPIE Symposium VoL 495, Real-Time Signal Processing VII, SPIE,

August, 1984.
The CMU programmable systolic chip (PSC) is an experimental, microprogrammable

8-13

RESIARCHI IN INTEGRATED VlSI SYSTMS

chip designed for the efficient implementation of a variety of systolic arrays. The
PSC has been designed, fabricated, and tested. The chip has about 25.000 transis-
tors, uses 74 pins, and was fabricated through MOSIS. thc DARPA silicon broker,
using a 4 micron nMOS process. A modest demonstration system involving nine
PSCs is currently running. Larger demonstrations are ready to be brought up when
additional working chips are acquired.

The development of the PSC, from initial concept to a silicon layout, took slightly less
that a year, but testing, fabrication, and system demonstration took an additional
year. This paper reviews the PSC, describes the PSC demonstration system, and
discusses some of the lessons learned from the PSC project.

[Forgy 841 Forgy, C., A. Gupta, A. Newell, R. Wedig.
Initial Assessment of Architectures for Production Systems.
In AAAI-84, National Conference for Artificial Intelligence, AAAI, August, 1984.

[Foster 811 Foster, M.J.
Syntax-Directed Verification of Circuit Function.
In Conference on VLSI Systems and Computations, Pages 196-202. October, 1981.

[Foster 821 Foster, M.J. and H.T. Kung.
Recognize Regular Languages With Programmable Building Blocks.
Journal of Digital Systems6(4):323-332, 1982.
Also available as CMU-CSD technical report CMU-CS-81-126.

This paper introduces a new programmable building-block for recognition of regular
languages. By combining three types fo basic cells a circuit for recognizing any
regular language can be constructed or "programmed" automatically from the
regular expression describing that language. Recognizers built in this way are
efficient pipeline circuits that have constant response time and avoid broadcast. In
addition, the paper proposes the use of a single, regular layout, called the PRA
(programmable recognizer array), that can be "personalized" to recognize the lan-
guage specified by any regular expression. PRA's provide compact reconfigurable
layouts for recognizer circuits, requiring only O(n log n) area for regular expres-
sions of length n.

[Foster 83] Foster, MJ.
A Laser-Programmable Chip for Language Recognition.
In Proceedings of the IEEE Workshop on Languages for Automation, IEEF, November,

1983.
A similar paper appeared in '84 MIT VLSI conference. See Foster, 'E.T.: A Laser-

Programmed Language Recognizer Chip' Jan. 1984 reference for abstract.

[Foster 84) Foster, MJ.
E.T.: A Laser-Programmed Language Recognizer Chip.
In Paul Penfield, Editor, Proceedings, Conference on Advanced Research in VLSI, Pages

171-178. MIT, January, 1984.
A similar paper appeared in Proceedings ofthe IEEE Workshop on Languages for

Automation, Nov. 1983.
Programmable layouts for specialized application areas allow the rapid design of ef-

ficient custom chips. This paper presents a prototype programmable layout for
language recognizers. The prototype chop was fabricated in NMOS, and
orogrammed by cutting aluminum lines using a laser. Design considerations, pro-

8-14

RISEARCII IN INTIEGRArED VISI SYSTEMS

gramming expertise, and test results for this chip are presented, and guidelines for
the design of future chips are extracted from this experience.

[Frank 81a] Frank, M.J. and l1.T. Kung.
Two Timing Samplers.
In Proceedings of the 1981 CalTech VLSI Conference, CalTech, February, 1981.

[Frank 81b] Frank, E.H. and R.F. Sproull.
Testing and Debugging Custom Integrated Circuits.
Technical Report CMU-CS-81-105, Carnegie Mellon University Computer Science Depart-

ment,
February, 1981.
Also in Computing Surveys (13)4, pp.425-451, December, 1981.

[Frank 81c] Frank, E.H., Ebeling, C.E., and Sproull, R.F.
Hierarchical Wirelist Format.
Technical Report VLSI Document V087, Carnegie Mellon University Computer Science

Department,
1981.

[Frank 82] Frank, E.
The Fast-I: A Data-Driven Multiprocessor for Logic Simulation.
Technical Report VLSI Document V121, Carnegie Mellon University Computer Science

Department,
October, 1982.

[Frank 83] Frank, E.D. and R.F. Sproull.
A Self-Timed Static RAM.
In Bryant, R., Editor, Proceedings of the Third Caltech Conference on Very Large Scale

Integration, Pages 275-285. California Institute of Technology, March, 1983.
This paper presents the design of a self-timed static RAM. Although the memory array

uses a conventional six-transistor static cell, extra circuitry is associated with each
column and each row of the memory to make the memory self-timed. This cir-
cuitry detects several conditions: address line precharge complete, word line
driven, bit line precharge complete, read complete, and write complete. To in-
crease the read speed, each column of the memory uses an unclocked sense
amplifier. The memory design includes a controller that implements a four-phase
request/acknowledge interface. Although the memory is intended for use as part
of a single-chip processor and not as a stand-alone chip, we have fabricated a 64 by
64 bit test chip and measured its performance.

[Gentleman 811 Gentleman, W.M. and H.T. Kung.
Matrix Triangularization by Systolic Arrays.
In Proceedings of SPIE Symposium Vol 298, Real- Time Processing IV, Pages 19-26. Society

of Photo-Optical Instrumentation Engineers, August, 1981.

[Gupta 81a] Gupta, S. and R.F. Sproull.
Filtering Edges for Gray-Scale Displays.
Computer Graphicsl5(3), August, 1981.

8-15

RISF.ARCHI IN INTEGRATD VSI SYSTEMS

[Gupta 81b] Gupta, S.. R.F. Sproull, and I.E. Sutherland.
A VLSI Architecture for Updating Raster-Scan Displays.
Computer Graphicsl 5(3). August, 1981.

[Gupta 83a] Gupta, A.
ACE: A Circuit Extractor.
In Proceedings of the 20th Design Automation Conference, IEEE, June, 1983.

This paper describes the design, implementation and performance of a flat edge-based
circuit extractor for NMOS circuits. The extractor is able to work on large and
complex designs, it can handle geometry, and outputs a comprehensive wirelist.
Measurements show that the run time of the edge-based algorithm used is linear in
size of the circuit, with low implementation overheads. The extractor is capable of
analyzing a circuit with 20,000 transistors in less than 30 minutes of CPU time on a
VAX 11/780. The high performance of the extractor has changed the role that a
circuit extractor played in the design process, as it is now possible to extract a chip
a number of times during the same session.

[Gupta 83b] Gupta, A. and R.W. Hon.
HEXT: A Hierarchical Circuit Extractor.
Journal of VLSI and Computer Systems, Spring, 1983.

This paper describes the algorithms, implementation, and performance of a hierarchical
circuit extractor for NMOS designs. The input to the circuit extractor is a descrip-
tion of the layout of the chip, and its output is a hierarchical wirelist describing the
circuit. The extractor is divided into two parts, a front-end and a back-end. The
front-end analyzes the CIF description of a layout and partitions it into a set of
non-overlapping rectangular regions called windows, redundant windows are
recognized and are extracted only once. The back-end analyzes each unique win-
dow found by the front-end. The back-end determines the electrical circuit
represented by the window, and computes an interface that is later used to com-
bine the window with others that are adjacent. The paper also presents a simple
analysis of the expected performance of the algorithm, and the results of running
the extractor on some real chip designs.

[Gupta 84a] Gupta, A.
Parallelism in Production Systems: The Sources and the Expected Speed-up.
Technical Report CMU-CS-84-169, Carnegie Mellon University Computer Science Depart-

ment,
December, 1984.

Production systems (or rule-based systems) are widely used in Artificial Intelligence for
modeling intelligent behavior and building expert systems. On the surface produc-
tion systems appear to be capable of using large amounts of parallelism-it is
possible to perform match for each production in parallel. Initial measurements
and simulations, however, show that the speed-up available from such use of paral-
lelism, is quite small. The limited speed-up available from the obvious sources has
led us to explore other sources of parallelism. This paper represents an initial
attempt to identify the various sources of parallelism in production system
programs and to characterize them, that is, to determine the potential speed-up
offered by each source and the overheads associated with it. The paper also ad-
dresses some implementation issues related to using the various sources of paral-
lelism.

8-16

RIS EARCIi IN IN'ILURATI'1) VISI SYSTEMS

[Gupta 84b) Gupta, A.
Implementing OPS5 Production Systems on DADO.
In Iniernational Conference on Parallel Processing, 1984.

DADO is a highly parallel trce-structured architecture designed to execute production
systems at Columbia University. In this paper, we analyze the performance of
DADO when executing OPS5 production system programs. The analysis is based
on the predicted performance of three different algorithms for implementing
production systems on DADO. Our analysis shows that the large-scale parallelism
in DADO is not very effective for executing OPSS-like production systems. The
reasons are: (1) actions of productions in OPS5 programs do not have global
affects, but only affect a small number of other productions, and (2) large-scale
parallelism almost always implies that the individual processing elements are weak.
Since only a small number of productions are affected every cycle, only a few of
the large number of processing elements perform useful work. Furthermore, since
the individual processing elements are weak, the performance is worse than if a
small number of powerful processors are used. The tree-structured topology of the
DADO architecture is not found to be a bottleneck.

[Haynes 82] Haynes, L.S., R.L. Lau, D.P. Siewiorek and D. W. Mizell.
A Survey of Highly Parallel Computing.
Computerl5(1), January. 1982.

[Hon 83] Hon, R.W.
The Hierarchical Analysis of VLSI Designs.
Technical Report CMU-CS-83-170, Carnegie Mellon University Computer Science Depart-

ment.
December, 1983.

As the complexity of integrated circuit designs increases, the task of verifying that the
masks are correct becomes very time consuming. Fortunately, the wide acceptance
of hierarchical mask description formats allows the development of methods that
take advantage of the structure in such descriptions. These hierarchical processing
methods are potentially much faster (for actual designs) than methods that ignore
hierarchy.

This thesis explores one method of hierarchically processing integrated circuit artwork.
The method has the following properties:

1. The same method is applicable to a range of artwork analysis tasks, for example
plotting, circuit extraction, and design-rule checking.

2. The method operates on mask descriptions, and can directly replace existing slower
techniques.

3. There are no restrictions on the type of designs that can be analyzed, so integrated
circuits created using any number of design systems can be checked.

Informal arguments for the method's correctness, performance results, and an overview
of where this type of design aid fits in the spectrum of VLSI tools are given.

[Hong 81] Hong, J. W. and H.T. Kung.
I/O Complexity: The Red-Blue Pebble Game.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computin& Pages

326-333. ACM SIGACT, May, 1981.
Also available as CMU-CSD technical report CMU-CS-81-120.

In this paper, the red-blue pebble game is proposed to model the input-output com-
plexity of algorithms. Using the pebble game formulation, a number of lower

8-17

Linpu~o
jwf

RSESFARCII IN INTEGRATED VLSI SYSI3MS

bound results for the 1/0 requirement are proven. For example, it is shown that to
perform the n-point FFT (or the ordinary nxn matrix multiplication algorithm)
with a device of O(S) memory, at least O(n log n/log S) (or O0nlV3'),
respectively) time is needed for the I/O. Similar results are obtained for algorithms
for several other problems. All of the lower bounds presented are the best possible
in the sense that they are achievable by certain decomposition schemes.

The results in this paper provide insight into the difficult task of balancing I/O and
computation in special-purpose system design. For example, for the n-point FFt,
the I/O lower bound implies that an S-point device achieving a speed-up ratio
O(logS) over the conventional O(n log n) implementation is all that one can hope
for.

[Hsu 84] Hsu, F.H., H.T. Kung, T. Nishizawa, and A. Sussman.
LINC: The Link and Inferconnection Chip.
Technical Report CMU-CS-84-159, Carnegie Mellon University Computer Science Depart-

ment
May, 1984.

The link and interconnection chip (LINC) is a custom chip whose function is to serve as
an efficient link between system functional modules, such as arithmetic units,
register files, and 1/0 ports.

LINC has 4-bit datapaths consisting of an 8x8 crossbar interconnection, a FIFO or
programmable delay for each of its inputs, and a pipeline register file for each of its
outputs. Using pre-stored control patterns, LINC can configure its interconnection
and delays on-the-fly, while running. Therefore the usual functions of busses and
register files can be realized with this single chip.

LINC can be used in a bit-sliced fashion to form interconnections with datapaths wider
than 4 bits. Moreover, by tri-stating the proper data output pins, multiple copies of
LINC can form crossbar interconnections larger than 8x8.

Operating at the target cycle time of 100 ns, LINC makes it possible to implement a
variety of high-performance processing elements with much reduced package
counts. This reduction of chip counts is especially significant for cost-effective
implementations of those multiprocessors such as systolic arrays which call for
large numbers of processing elements.

This paper gives the architectural specification of LINC, and justifies the specification
by some application examples.

[Kung 81al Kung, H.T., L.M. Ruane, and D.W.L. Yen.
A Two-Level Pipelined Systolic Array for Convolutions,
In Kung, H.T., G.L. Steele, Jr., and R.F. Sproull, VLSI Systems and Computations. Com-

puter Science Press, Inc., 1981.
Pipelining computations over a large array of cells has been an important feature of

systolic arrays. To achieve even higher degrees of concurrency, it is desirable to
have cells of a systolic array themselves be pipelined as well. The resulting two-
level pipelined systolic array would enjoy in principle a k-fold increase in its
throughput, where k is the ratio of the time to perform the entire cell computation
over that to perform just one of its pipeline stages. This paper describes such a
two-level pipelined systolic array that is capable of performing convolutions of any
dimension. The designs take full advantages of the pipelining assumed to be
available at each cell.

Multi-stage pipelined arithmetic units built from discrete components have been used

3-18

RES ARCII IN IN IEGRATFD Vl SI SYSTEMS

in most of high-pcrformance computers. With the advent of VLSI. these pipclined
units will surcly be implemented in one or few chips. This paper shows for the first
time how a large number of these pipelined chips can be cfficiendy combined to
form a systolic array.

[Kung 81b] Kung, H.T.
Design of Algorithms for Direct VLSI Implementation,
In Cavalli, E., Design of Numerical Algorithms for Parallel Processing. Academic Press, 1981.

[Kung 81c] Kung, H.T., G.L. Steele Jr., and R.F. Sproull (eds.).
VLSI Systems and Computations
Computer Science Press, Inc., Maryland, 1981.

[Kung 81d] Kung, H.T.
Use of VLSI in Algebraic Computation: Some Suggestions.
In Wang, P.S., Editor, Proceedings of 1981 ACM Symposium on Symbolic and Algebraic

Computation, Pages 218-222. ACM SIGSAM, August, 1981.

[Kung 81e] Kung, H.T. and R.L. Picard.
Hardware Pipelines for Multi-Dimensional Convolution and Resampling.
In Proceedings of the 1981 IEEE Computer Society Workshop on Computer Architecture for

Pattern Analysis and Image Database Management, Pages 237-278. IEEE, November,
1981.

A later version appears as 'One-Dimensional Systolic Arrays for Multidimensional Convolu-
tion and Resampling,' 1984.

[Kung 82a] Kung, H.T. and S.W. Song.
A Systolic 2-D Convolution Chip,
In Preston, K., Jr. and L. Uhr, Multicomputers and Image Processing: Algorithms and

Programs, Pages 373-384. Academic Press 1982.
Also available as CMU-CSD technical report CMU-CS-81-110.

This paper describes a chip for performing the 2-D (two-dimensional) convolution in
signal and image processing. The chip, based on a systolic design, consists of essen-
tially only one type of simple cells, which are mesh-interconnected in a regular and
modular way, and achieves high performance through extensive concurrent and
pipelined use of these cells. Denoting by u the cycle time of the basic cell, the chip
allows convolvin a kxk window with an nxn image in O(n 2u/k) time, using a total
of k3 basic cells. The total number of cells is optimal in the sense that the usual
sequential algorithm takes O(n 2k2u)> time. Furthermore, because of the
modularity of the design, the number of cells used by the chip can be easily
adjusted to achieve any desirable balance between I/O and computation speeds.

[Kung 82b] Kung, H.T. and S.Q. Yu.
Integrating High-Performance Special-Purpose Devices into a System.
In Notes for Symposium on Vector and Parallel Processors, IBM Italy Scientific Center,

March, 1982.
See Kung and Yu, May 1982, SPIE Vol. 341 Real Time Signal Processing V, for abstract.

[Kung 82c] Kung, H.T.
Why Systolic Architectures?
Computer MagazinelS(l):37-46, January, 1982.

_--i

RI'SIARCII IN INTEGRATED VLSI SYSTEMS

(Kung 82d] Kung, H:'. and S.Q. Yu.
Integrating Ifigh-Pcrformance Special-Purpose Devices into a System.
In SPIE Vol. 341 Real rime Signal Processing V(1982). SPIF. May. 1982.

An emerging belief among many researchers is that a significant portion of the next
generation of high performance computers will be based on architectures capable
of exploiting very large scale integration (VLSI) modules. In particular, it is
desirable to have a compact system that can be plugged in with interchangeable
high perfbrmance modules to fit various application requirements. The system can
be an efficient signal processor when special purpose signal processing modules are
used; it can also be an efficient database machine when the modules are replaced
with data processing modules. This paper discusses some of the issues in the design
of such a system, and describes the framework of a system that is being developed
atCMU.

[Kung 83a] Kung, H.T., L.M. Ruane, and D.W.L. Yen.
Two-Level Pipelined Systolic Array for Multidimensional Convolution.
Image and Vision Computingl(1):30-36, February, 1983.
Also available as CMU-CSD technical report CMU-CS-83-103.

This paper describes a systolic array for the computation of n-dimensional (nD) con-
volutions for any positive integer n. Systolic systems usually achieve high perfor-
mance by allowing computations to be pipelined over a large array of processing
elements. To achieve even higher performance, the systolic array described in this
paper uses a second level of pipelining by allowing the processing elements them-
selves to be pipelined to an arbitrary degree.

[Kung 83b] Kung, H.T.
Two-Level Pipelined Systolic Arrays for Matrix Manipulation, Polynomial Evaluation, and

Discrete Fourier Transfonn.
In Proceeding of the Workshop on Dynamical Behavior of Automata: Theory and

Application. Academic Press, September, 1983.
In recent years many systolic algorithms have been designed and several prototypes of

systolic array processors have been constructed. Major efforts have now started in
attempting to use systolic array processors in large, real-life applications. Practical
issues on the implementation of systolic array processors have begun to receive
substantial attention.

One of the important implementation issues relates to the efficient use of pipelined
functional units in the implementation of systolic cells. For example, high through-
put floating-point multiplier and adder circuits typically employ three or more
pipeline stages. Systolic cells implemented using these units form a second level of
pipelining in the pipelined organization of systolic arrays. This additional level of
pipelining can greatly increase the system throughput

(Kung 83c] Kung, H.T. and W.T. Lin.
An Algebra for VLSI Algorithm Design.
Technical Report CMU-CS-84-100, Carnegie Mellon University Computer Science Depart-

ment,
ApriL 1983.

Algoritum designed for VLSI implementation are usually parallel and two-
dimensional in the sense that many processing elements laid out on a silicon mUr-
face can operate simultaneously. These algorithms have been typically described
by graphs or networks where nodes represent processing elements or registers and

RI'SFiARC|I IN INTEGRA'rT.ED VLSI SYSTEMS

edges represent wires. Although for many purposes these traditional represen-
tations are adequate for specifying VLSI algorithms. they are not suited for
manipulating algorithm designs. In this paper an algebraic representation, together
with a semantics, is proposed for VLSI algorithm designs. By algebraic transfor-
mations analogous to some typically used in linear algebra, alternative but equiv-
alent designs satisfying desirable properties such as locality and regularity in data
communication can be derived. 'Ihis paper describes this powerful algebra for
manipulating designs, and provides a mathematical foundation for the algebraic
transformations. The algebraic framework is more suitable for supporting formal
manipulation of designs than the network or graph-theory models, especially for
complex designs. As an application of the proposed algebra, the paper
demonstrates its use in the design and verification of systolic algorithms.

[Kung 83d] Kung, H.T. and M. Lam.
Fault-Tolerance and Two-L evel Pipelining in VLSI Systolic Arrays.
Technical Report CM U-CS-83-166, Carnegie Mellon University Computer Science Depart-

ment,
November, 1983.

This paper addresses two important issues in systolic designs: fault-tolerance and two-
level pipelining. The proposed 'systolic' fault-tolerant scheme maintains the
original data flow pattern by bypassing defective cells with a few registers. As a
result, many of the desirable properties of systolic arrays (such as local and regular
communication between cells) are preserved. Two-level pipelining uses pipelined
units to increase the overall system. We show that both of these problems can be
reduced to the same mathematical problem of incorporating extra delays on cer-
tain data paths in originally correct systolic designs. We introduce the mathemati-
cal notion of a cut which enables us to handle this problem effectively.

The results obtained are encouraging. When delays are added to systolic arrays without
feedback cycles, the arrays can tolerate large numbers of failures (with the addition
of very little hardware) while maintaining the original throughput. However, ad-
ding delays to systolic arrays with cycles typically induces a significant decrease in
throughput. In response to this, we have derived a new class of systolic algorithms
to cycle the data around a ring of processing cells. The systolic ring architecture's
performance degrades gracefully as cells fail.

[Kung 83e] Kung, H.T.
A High Performance Microprocessor Chip to Be Used in Groups of Hundreds.
In Proceedings of IEEE EASCON '83, Pages 251-258. IEEE, September, 1983.

[Kung 83nJ Kung, H.T. and W.T. Lin.
An Algebra for VLSI Computation,
In Birkhoff, G. and A. Schoenstadt, Elliptic Problem Solvers II. Academic Press, Orlando,

1983.

[Kung 83g] Kung, H.T.
VLSI, Computer Science, and Synergetic Research.
In Proceedings of the ACM llth Annual Computer Science Conference, Pages 17-19.

February, 193.

8-21

RESEARCH IN INTEGRATED VLSI SYSTEMS

(Kung 83h] Kung. H.T.
On the Implementation and Use of Systolic Array Processors.
In Proceedings of International Conference on Computer Design: VLSI in Computers, Pages

370-373. IEEE. November. 1983.
In recent years many systolic algorithms have been designed and several prototypes of

systolic array hardware have been constructed. Major efforts now started in at-
tempting to use systolic array processors in large, real-life applications; practical
issues on the implementation and use of systolic array processors in systems have
begun to receive substantial attention. This paper first examines various im-
plementation issues and alternatives, and then identifies some work that is essential
to the eventual, wide use of systolic array processors.

[Kung 83i] Kung, H.T, and S.Q. Yu.
Integrating High-Performance Special-Purpose Devices into a System,
In Randel, B. and Treleaven, P.C., VLSI Architecture, Pages 205-211. Prentice/Hall Inter-

national, 1983.
An emerging belief among many researchers is that a significant portion of the next

generation of high performance computers will be based on architectures capable
of exploiting very large scale integration (VLSI) modules. In particular, it is
desirable to have a compact system that can be plugged in with interchangeable
high performance modules to fit various application requirements. The system can
be an efficient signal processor when special purpose signal processing modules are
used; it can also be an efficient database machine when the modules are replaced
with data processing modules. This paper discusses some of the issues in the design
of such a system, and describes the framework of a system that is being developed
at CMU.

[Kung 84a] Kung. H.T. and R.L. Picard.
One-Dimensional Systolic Arrays for Multidimensional Convolution and Resampling,
In Fu, King-sun, VLSIfor Pattern Recognition and Image Processing, Pages 9-24. Springer-

Verlag, 1984.
We present one-dimensional systolic arrays for performing two- or higher-dimensional

convolution and resampling. These one-dimensional arrays are characterized by
the fact that their 1/O bandwidth requirement is independent of the size of the
convolution kernal. This contrasts with alternate two-dimensional array solutions,
for which the I/O bandwidth must increase as the kernal size increases. The
proposed architecture is ideal for VLSI implementation - and arbitrarily large
kernel can be handled by simply extending the linear systolic array with simple
processors of the same type, so that one processor corresponds to each kernel
element.

[Kung 84b] Kung, H.T. and W.T. Lin.
An Algebra for Systolic Computation,
In Birkhoff, G. and A. Schoenstadt, Elliptic Problem Solvers II, Pages 141-160. Academic

Press, 1984.

8-22

RESEARCiH IN INTFGRATED VLSI SYSTEMS

[Kung 84c] Kung, H.T. and M.S. Lam.
Fault-Tolcrance and Two-Level Pipelining in VLSI Systolic Arrays.
In Proceedings of Conference on Advanced Research in VLSI, MIT, January, 1984.
Also available as CMU-CSD technical report CMU-CS-83-166. A revised version appears

in Journal of Parallel and Distributed Computing, vol. 1, 1984. For abstract, see Kung 84
"Wafer-Scale Integration and Two-Level Pipelined Implementation of Systolic Arrays.".

[Kung 84d] Kung, H.T.
Systolic Algorithms and Their Implementation.
In Proceedings of the 17th Hawaii International Conference on System Sciences, Pages 5-11.

January, 1984.

[Kung 84e] Kung, H.T. and M. Lam.
Wafer-Scale Integration and Two-Level Pipelined Implementation of Systolic Arrays.
Journal of Parallel and Distributed Computingl:32-63, 1984.
A preliminary vc sion appeared in Proceedings of the Conference on Advanced Research in

VLSI, MIT, January 1984.
Two important issues in systolic array designs are addressed: How is fault tolerance

provided in systolic arrays to enhance the yield of wafer-scale integration im-
plementations? And, how are efficient systolic arrays with two levels of pipelining
designed? (The first level refers to the pipelined organization of the array at the
cellular level, and the second refers to the pipelined functional units inside the
cells.) The fault-tolerant scheme proposed replaces defective cells with clocked
delays. The mathematical notion of a cut is introduced to solve the problem of how
to allow for the extra delays in the data paths while preserving the correctness of
the original systolic array designs.

The results obtained by applying these techniques are encouraging. When applied to
systolic arrays without feedback cycles, the arrays can tolerate large numbers of
failures while maintaining the original throughput. Furthermore, by adding a
small number of delay registers, all the pipeline stages in the cells can be kept fully
utilized. However, adding delays to systolic arrays with cycles typically induces a
significant decrease in throughput.

In response to this, a new class of systolic algorithms has been derived in which the data
cycle around a ring of processing cells. The systolic ring architecture has the
property that its performance degrades gracefully as cells fail. Use of the cut theory
and ring architectures for arrays with feedback gives effective fault-tolerant and
two-level pipelining schemes for most systolic arrays. As a side effect of developing
the ring architecture approach, several new systolic algorithms have been derived.

[Lan 831 Lam, M. and J. Mostow.
A Transformational Model of VLSI Systolic Design.
In Proceedings of the 6th International Symposium on Computer Hardware Description Lan-

guages and their Applications, Pages 65-77. IFIP, May, 1983.
A later version appears in Computer, Feb. 1985.

This paper presents a transformational model and convenient notation for systolic
design. The model is implemented in a program that accepts a software algorithm,
along with a bit of advice, and applies a series of transformations to produce a
functional-level circuit description. The simplicity of the program and the clarity
of the notation appear largely due to two factors:

1. The representation of a design is factored into a structure description, which

8-23

RESEARCII IN INTEGRATE) VLSI SYSTEMS

specifics the hardware components and their interconnections, and a driver,
which relates the input and output data streams for the structure to the
variables used in the algorithm.

2. The notation includes constructs that make it easy to represent timing and
communication schemes common in systolic design.

[Lehman 811 Lehman, P.L.
A Systolic (VLSI) Array for Processing Simple Relational Queries.
In VLSI Systems and Computations, Pages 285-295. Computer Science Press, Inc., Oct.

1981.
This paper discusses the use of systolic arrays (a conceptual and design tool for VLSI

systems) to produce VLSI capable of processing simple relational database queries,
which are by far the most frequently executed queries in practical large database
systems. We will be concerned with the exploitation of VLSI technology to process
"simple" relational queries very rapidly the design of an array for this task is
described below. The systolic properties of the array design are considered, and are
shown to have analogs in the domain of databases by using the systolic properties
to prove certain consistency and scheduling complexity properties of all trans-
actions executed by the array (hereinafter called the simple query array, or SQA).
The SQA is intended for use as an integral part of a systolic database machine,
which would handle very large databases and is expected to have a high perfor-
mance gain over conventional database systems. The machine should also compare
quite favorably with other database machine designs, especially when use for
databases with frequent simple queries, ie. those databases used by most commer-
cial applications.

[Leiserson 81) Leiserson, C.E and J.B. Saxe.
Optimizing Synchronous Systems.
In Proceedings of the 22nd Annual Symposium on Foundations of Computer Science, Pages

23-36. IEEE Computer Society, October, 1981.

(Leiserson 83a] Leiserson, CE.
Area-Efficient VLSI Computation.
PhD thesis, Carnegie-Mellon University, 1983.

[Leiserson 83b] Leiserson, C.E. and J.B. Saxe.
Optimizing Synchronous Systems.
Journal of VLSI and Computer Systemsl(1):41-68, 1983.

11-uk 84a] Luk, W.K.
ROUTER: A Set of Routing Tools for VLSI Layout.
Technical Report VLSI Document V155, Carnegie Mellon University Computer Science

Department,
April, 1984.

(Luk 84b] Luk, W.T.
A Greedy Switch-box Router.
Technical Report CMU-CS-84-148, Carnegie Mellon University Computer Science Depart-

ment
May, 1984.

We show how to extend the greedy channel router of Rivest and Fiduccia into an

8-24

RIS-EARCII IN INTEGRATID VISI SYSTEMS

efficient switch-box router. Terminals are on the boundary of a rectangular region,
and the router uses two orthogonal layers of wires to generate the solution. The
router always succceds in finding a solution by inserting sufficicnt horizontal and
vertical tracks in case of failure. The result is generated through a single scan of the
routing region. The implemcnted router is designed for assembling custom VLSI

design, it works in parallel with other tools such as a layout editor which serves as
an interface. The router output is in CIF.

[Luk 84c] Luk, W.K. and J.E. Vuillemin.
Recursive Implementation of Optimal Time VLSI Integer Multipliers,
Advances in Computing Research. JAI Press, Inc., 1984.

[Oflazer 831 Oflazer, K.
Design and Implementation of a Single-Chip 1-D Median Filter.
In IEEE Transactions on Acoustics Speech, and Signal Processing, IEEE, October, 1983.
Also available as CMU-CSD techreport CMU-CS-82-115.

The design and implementation of a VLSI chip for the one-dimensional median filter-
ing operation is presented. The device is designed to operate on 8-bit sample
sequences with a window size of five samples. Extensive pipelining and employ-
ment of systolic data-flow concepts at the bit level enable the chip to filter at rates
up to ten megasamples per second. A configuration for using the chip for ap-
proximate two- dimensional median filtering is also presented.

[Oflazer 841 Oflazer, K.
Partitioning in Parallel Processing of Production Systems.
In Keller, R., Editor, Proceedings of the International Conference on Parallel Processing,

ACM, IEEE, and Department of Computer and Information Science, Ohio State
University at Columbus, August. 1984.
The results of an analysis of production level parallelism in OPS5 production system

programs is presented. The results indicate that contrary to most expectations, the ,-

effective production level parallelism in this class of production systems considered
is very low compared to the number of productions in these systems. Hence,
significant speed-ups in executing such systems would be obtained by combining
the limited parallelism with fast hardware and overlapped processing; rather than
by massively parallel approaches employing simple processors. Later, the problem
of partitioning productions in a production system to a small number of processors
in a parallel processing system is presented. The goal of partitioning is to improve
the speed-up provided by the limited parallelism by finding assignments of
productions to processors that achieve a more balanced load for each processor.

[Ostdund 82] Ostlund, N., P. Hibbard, and R. Whiteside.
A Case Study in the Application of a Tightly Coupled Multiprocessor to Scientific Com-

putations,
In Alder, B., S. Fernbach, and M. Rotenberg, Parallel Computations. Academic Press, Inc.,

1982.

(Raibert 82a] Raibert, M.H. and J.E. Tanner.
A VLSI Tactile Array Sensor.
In Proceedings International Symposium on Industrial Robots, 1982.

A new type of tactile sensor is presented that was designed to give a robot manipulation
system information about contact between its hand and objects in the environ-

8-25

RFIARCiH IN INTEGRATED VLSI SYSTEMS

ment. We describe a device that is at once a special purpose parallel computer and
a high resotution tactile sensing array. We have replaced the passive substrate of
earlier tactile sensors with a custom designed nMOS VLSI device that handles
transduction, computing and communication. Forces are transduced using a stan-
dard conductive plastic technique. An array of processors, the sensor performs
filtering and simple convolution operations on the tactile image. Data are then
read from the array serially and transmitted to a control computer. A 6x3 array
with 1 mm square tactile cells has been fabricated and is working in the laboratory.
Larger devices, up to 30 x 30 cells, are currently being designed.

(Raibert 82b] Raibert, M.H. and .E. Tanner.
Design and Implementation of a VLSI Tactile Sensing Computer.
Robotics Researchl(3), Fall, 1982.

A new type of tactile sensor is presented that was designed to give a robot manipulation
system information about contact between its hand and objects in the environ-
ment. We describe a device that is at once a special purpose parallel computer and
a high resolution tactile array sensor. The passive substrates of earlier tactile sen-
sors have been replaced with a custom-designed very large scale integration (VLSI)
device that performs transduction, tactile image processing, and communication.
Forces are transduced using a conductive plastic technique in conjunction with
metal electrodes on the surface of an integrated circuit. An array of processors
implemented within the integrated circuit perform parallel two-dimensional con-
volutions between programmable filtering masks and a binary tactile image. Data
are then read from the array serially, so they can be transmitted to a control
computer. A 6x3 array sensor with 1 mm 2 tactile cells has been designed and
tested. It is fully functional.

In preparation for constructing large sensor arrays with hundreds of elements, the
possibility of constructing defect tolerant tactile cells was explored. Analyses based
on the Poisson model indicate that working arrays with 1,000 functional cells are
possible if computing elements are replicated within each tactile cell. Experiments
on a 3x3 array sensor with redundant pairs of computing elements suggest that
large tactile sensing arrays are within reach.

[Song 81aJ Song, S.W.
On a High-Performance VLSI Solution to Database Problm.
PhD thesis, Carnegie-Mellon University, July, 1981.
Also available as a CMU Computer Science Department technical report, VLSI Document

V075, August 1981.
This thesis explores the design and use of custom-made VLSI hardware in the area of

database problems. Our effort differs from most previous ones in that we search
for structures and algorithms, directly implementable on silicon, for the solution of
computation-intensive database problems. The types of target database systems
include the general database management systems and the design database sys-
tems. The thesis deals mainly with database systems of the relational model. One
common view concerning special-purpose hardware usage is that it perfbrms a
specific task. The proposed device is not a hardware solution to a specific problem,
but provides a number of useful data structures and basic operations. It can be
used to improve the performance of any sequential algorithm which makes exten-
sive use of such data structures and basic operations. The design is based on a few
cells, interconnected in the form of a complete binary tree. The proposed device

8-26

RESEARCH IN INTEGRATED VLSI SYSTEMS

can handle all the basic relational operations: select, join, project, union, and inter-
section.

(Song 81b] Song, S.W.
!/0 Complexity and Design of Special-Purpose Hardware for Sorting.
Technical Report VLSI Document V075, Carnegie Mellon University Computer Science

Department,
February, 1981.
For abstract, see Song's PhD thesis "On a High-Performance VLSI Solution to Database

Problems," 1981.

[Sproull 81a) Sproull. R.F.
Using Program Transformations to Derive Line-Drawing Algorithms.
Technical Report CMU-CS-81-117, Carnegie Mellon University Computer Science Depart-

ment,
April, 1981.

[Sproull 81b] Sproull. R. F.
Simple Color Checkpoints.
VLSI Design2(2), August, 1981.

[Sproull 81c] Sproull, R.F., I.E. Sutherland, A. Thompson, S. Gupta, and C. Minter.
The 8 x 8 Display.
Technical Report CMU-CS-82-105, Carnegie Mellon University Computer Science Depart-

ment
December, 1981.

[Steele 81] Steele, G.L.
VLSI Systems and Computations.
In Proceedings of the 1981 Conference on VLSI Systems and Computations, Carnege-

Mellon University, October, 1981.

[Sugie 84] Sugie, M., 0. Menzilcioglu, and H.T. Kung.
CARGuide--On Board Computer for Automobile Route Guidance.
In Proceedings of the 1984 National Computer Coqference, Pages 695-706. July, 1984.

[Tanner 811 Tanner, J. E., M.H. Raibert, and R. Eskenazi.
A VLSI Tactile Sensing Array Computer.
In Proceedings of the 1981 CalTech Conference on VLSI Systems, California Institute of

Technology, February. 1981.

[Tsao 81] Tsao, M.M., A.W. Wilson, R.C. McGarity, C.J. Tseng, and D.P. Siewiorek.
C.fast: A Fault Tolerant and Self Testing Microprocessor.
In VLSI Systems and Computations, Pages 357-366. Computer Science Press, Inc., October,

1981.

[Tsao 821 Tsao, M., A. Wilson, R. McGarity. C.J. Tseng, and D.P. Siewiorek.
Design of a C.fast: A Single Chip Fault-Tolerant Microprocessor.
In Proceedings of the 12th Fault Tolerant Computing Symposium (FTCS-12), IEEE Com-

puter Society, June, 1982.

8-27

RESF ARCH IN INTlGRATED VLSI SYSTEMS

[Walker 81] Walker, H.
A Time-Multiplexed Crossbar for the NETL Machine?.
Technical Report VLSI Document V094. Carnegie Mellon University Computer Science

Department,
1981.

[Walker 82] Walker, H.
Yield Simulation for Integrated Circuits - A Thesis Proposal.
Technical Report VLSI Document V121, Carnegie Mellon University Computer Science

Department,
October, 1982.

[Walker 83a) Walker, H. and S. Director.
Yield Simulation for Integrated Circuits.
In ICCAD83, Pages 256-257. September, 1983.

[Walker 83b] Walker, H.
The Control Store and Register File Design Of The Programmable Systolic Chip.
Technical Report CMU-CS-83-133, Carnegie Mellon University Computer Science Depart-

ment,
May, 1983.

The design of a 64 word by 60-bit writable control store and a 64 word by 9--bit register
file is described. A dynamic three-transistor NMOS RAM cell is used to meet area
constraints. Sense amplifiers reduce access time and bootstrapped logic reduces
power dissipation. A shift register is used to load the control store. Experimental
results indicate a typical read/write cycle time of 160ns and power dissipation of
150mW for the control store.

[Walker 83c] Walker, H.
4-KB IT Four- Transistor Dynamic RAM.
Technical Report CMU-CS-83-140, Carnegie Mellon University Computer Science Depart-

ment,
June, 1983.

[Weiser 81] Weiser, U. and Davis. A.
A Wavefront Notation Tool for VLSI Array Design,
In Kung, H.T., Sproull, R.F., and Steele, G.L., Jr., VLSI Systems and Computations, Pages

226-234. Computer Science Department, CMU, Computer Science Press, Inc., 1981.
This paper presents an overview of an extension to a mathematically based methodol-

ogy for mapping an algorithmic description into a concurrent implementation on
silicon. The result of this methodology yields a systolic array. The basic math-
ematical method was initially described by Cohen. Extensions were made by
Weiser and Davis, and a number of others. This approach focuses on the cor-
respondence between equations defining a certain computation and networks
which perform the computation. As the complexity of problems increases, a hierar-
chical approach can reduce the complexity by hiding detail and thus reduce the
design complexity at each level. The purpose of this paper is to introduce a method
for treating sets of data as wavefront entities in the equations of the mathematical
methodology and in the graphical representation.

8-28

INDEX

Index
Accent 6-1
Active database 5-7
Ads 5-1
Ads+ 5-3
Advanced environments 5-6
Aerial images 3-5
Aeria mapping 3-7
Analogy 4-2
Atomic transactions 5-4
Authentication 5-7
Automated image analysis 3-6

B* search algorithm 4-3
Beam search 8-4
BKG 4-3
Boltzamn 4-4

Camera motion 3-8
Cartography 3-7. 3-9
Chess machine 8-5
Chunking 4-3. 4-6
Circuit extractors 8-6
Cm* 5-4
Coarse-class lattice 4-10
Code optimization 5-2
Communication costs 8-3
Communication protocols 6-2
Compiler generator 5-3
Compiler-generator 5-1
Compiling techniques 5-3
Cooperative User Interface 7-1
Coordinate transformations 3-6
Correctness S-5. 8-2
Cousin-Spice 7-1. 7-2
Cousin-Unix 7-1, 7-2

Data acquisition system 3-6
Database processing 8-4
Depth information 3-3
Derivational aalo 4-2
Designer 4-7
Dian 5-2
Digital mapping 3-6
Distributed sensor network 6-1
DPL-82 6-4
DSN 6-1
DYPAR 7-3

Fault recovery 6-2. 6-3
Fault-tolerant systems 5-S
Feature 4-9
Fido 3-8
Formt-Editor 7-4
Form-Manage 7-4

Clandalf S-3
Oandalf systun 5-7

INDEX

Generalized cylinders 3-2
Generators S-2
Generic comnpiler-generating S-1
Gnome S-8
Gradient 3-1
Gradient space theory 3-1

Hitech 4-8

logo 4-3
IDL 5-2
llumination surhe. 3-2

Imiage Matching 3-3
Image/nmp database 3-6
Inheritance 4-
Interconnection chip 8-5
Interest operators 3-S
Interface specification 6-3
Interprocess communication 6-1

LI.nguage analysi S-1
Leatning 4+6.4-S
UNC 5-S
Load-balancing 6-3

Machine learning 4+2
MAPS 3-7.4-10
Matchumaker 6-3
Method oftdifferences 3-8
Model-based visim 3-S
Modeling 3-4
Multiview mnags 3-5
Multiprocessors 5-4

Navigation 3-7
NEIL 4-4

Occluding contours 3-2.3-S
Operating systan 6-1
Optical flow 3-8
Optimizing Compile.s S-3

Parallel architecture S-4
Path relaation 3-8
Pattern recognition algorithm 8-S
Phoenix 3-9
Phonetic lattice 4-10
Phot* NjmInwrret. -3-6
PQCC S-2
Problem decomlposition 8-3
Prodigy 4-S
Product=o Quality Compile Compiler S-2
Program library 346
Progra transformadon 8-2
Programinable arcitectures 8-3
Progltrmble syssolic tp "-
Progrmmin-th-lrg
Programming-nte-mmfll5
Project, neaen 5-7
PlC 8-S

-2

INDEX

QBKG 4-3

Rl-Soar 4-6
Range images 3-5
Rangefinder 3-S
Reconfiguratio 5-5
Redundancy 5-4
Regular expresion matching 8-5
Reliability 5-4.6-4
Remote procedure ral 6-3
Replication 5-4
Rover 3-S
Runtime suppot 5-2

Sapphir 7-S
Scanline 3-3
Security 5-4
Shadow geometry theory 3-2
Shape inference 3-2
Shape matching 3-6
soar 4-S
Solids of revolution 3-2
SPAM 410
Speech recognition 4-9
Spice 2-1
SRI testhed 3-9
Stardust 6-3
Stereo 3-3.3-9
Superpuz 4-4
Synchronization 8-3
System building blocks 8-3
System reliability 5-3
System security 5-3
Systolx gorithms 8-2

TABS 5-5. 6-4
Tactile sensor chips 8-S
Target programming environment 54
Task-speciflc archtectum 8-3
Temporal lg 5 --S
Testing custme chips H
Transaction 6-4
Transomadonal analoy 42

Universal subloaiol 4-5

Velocity fields 3-9
Verfltion 5-5
Virtual memory 6-1
Voice mege sstan 49.7-6

Wafer scale integration 8-3
Warp 8-3
Wap RpOwuo 1.5
Weak methods 45
World mandeu 4.2

t.S. GPO 646-067

.3

0000

L00000,

12

